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A deterministic geometric representation of temporal 
rainfall: Results for a storm in Boston 

Carlos E. Puente and Nelson Obreg6n 
Hydrologic Sciences, Department of Land, Air and Water Resources, University of California, Davis 

Abstract. The use of a deterministic fractal-multifractal (FM) representation to model 
high-resolution rainfall time series via projections of fractal interpolating functions 
weighed by multifractal measures is reported. It is shown that the intrinsic shape and 
variability of an 8-hour Boston storm recorded every 15 s on October 25, 1980, may be 
encoded wholistically, employing the fractal geometric methodology. It is illustrated that 
the FM methodology provides very faithful descriptions of both major trends and small 
(noisy) fluctuations for this storm, resulting in preservation of not only classical statistical 
characteristics of the records but also rnultifractal and chaotic properties present in them. 
These results, and those for other storms, suggest that a stochastic framework for rainfall 
may be bypassed in favor of a deterministic representation based on projections. 

1. Introduction 

Modeling the structure of temporal rainfall has attracted 
much attention in the literature for the last 30 years. Although 
several sophisticated (deterministic and stochastic) rainfall 
models exist, they are built to preserve some characteristics of 
the records and consequently do not capture all the variability 
observed at a fixed location when a storm passes by. Typically, 
these models preserve some statistics of the available data set 
but do not keep the intermittent details present in the records. 
Since knowing details may be important in predicting the rain- 
fall process, an alternative approach to temporal rainfall 
should be considered. 

Existing temporal rainfall representations may be classified 
dependcling on their basic building blocks, as follows: (1) phys- 
ically based, (2) point process, (3) chaotic, and (4) fractal 
geometric. Physically based models approximate the physical 
processes giving rise to the observed rainfall [e.g., Georgakakos 
and Bras, 1984]. By employing basic thermodynamics, cloud 
microphysics principles, and integration of the cloud on top of 
a recording station, these representations produce intermittent 
outcomes which nonetheless do not capture the inherent de- 
tails present in the records. This happens, in part, because of 
approximated parameterizations which reflect our lack of un- 
derstanding of all the processes taking place within the atmo- 
sphere. 

Typical stochastic point process models approximate the 
irregular and complex rain patterns (of a fractal and/or multi- 
fractal nature) by superimposing randomly arriving Euclidean 
objects (e.g., rectangular pulses). Models with Poisson and 
cluster-based arrival processes have been defined such that 
some statistical features of the rainfall time series (e.g., mean, 
variance, autocorrelations, e.tc.) are preserved (see, for in- 
stance, Eagleson [1978]; Kavvas and Delleur [1981]; Smith and 
Karr [1983]; and Rodriguez-Iturbe [1986], among others). Al- 
though it has been found that cluster-based procedures are 
better than Poisson-based ones [e.g., •aldes et al., 1985; 
Rodriguez-Iturbe et al., 1987], inconsistencies have been ob- 
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served in cluster models regarding their ability to have a 
unique set of parameters irrespective of the data's degree of 
aggregation [Foufoula-Georgiou and Guttorp, 1986]. Despite 
providing a theoretical framework which includes beautiful 
ideas and models, these representations are typically limited by 
their analytical tractability due to the simplifying assumptions 
which they require, for example, stationarity, ergodicity, etc. 
Also, the geometric outcomes they produce do not fully cap- 
ture the very complex intermittency patterns observed in rain- 
fall. 

The possibility that rainfall could be understood as a low- 
dimensional chaotic process was introduced by Rodriguez- 
Iturbe et al. [1989]. Even though determinism becomes an im- 
portant component of this approach, actual dynamic modeling 
(i.e., finding the equations of motion from a time series) is 
quite difficult [e.g., Crutchfield and McNamara, 1987; Casdagli, 
1989] and limits the practical applicability of the otherwise 
beautiful methodology. The typical length of available storm 
records also precludes a complete analysis following such 
ideas. In any event, whether or not there is a climatic attractor 
remains a relevant topic of research [e.g., Tsonis and Elsner, 
1989]. 

A stochastic fractal representation of rainfall was introduced 
by Lovejoy and Schertzer [1985, 1990] and Schertzer and Lovejoy 
[1987] via the notion of universal multifractals. Their idea is to 
represent rainfa!l as a realization of a Levy process and pa- 
rameterize it via its codimension function (basically the left 
portion of the multifractal spectrum [e.g., Feder, 1988; C. E. 
Puente et al., Deterministic multifractals with negative dimen- 
sions?, submitted to Physical Review E, 1996]. Success has been 
attained in characterizing such a function for alternative data 
sets [e.g., Lovejoy and Schertzer, 1990]. Even though reasonable 
looking simulations, having intermittency as found in rainfall, 
may be obtained, it is difficult to find conditional simulations 
with such an approach. It is also pertinent to note that the 
codimension function (even when compactly parameterized), 
as well as other classical statistical characteristics like mean, 
variance, and autocorrelation, do not really characterize a 
given data set. In fact, having the codimension function pre- 
served does not imply the capturing of the actual locations of 
the details present in the records. 
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Figure 1. The fractal-multifractal framework in two dimen- 
sions; d y = dx o f- •. 

In this work, a new procedure for the quantification of hy- 
drologic (geophysical) phenomena is reviewed and a particular 
application to temporal rainfall for a high-resolution storm is 
given. The procedure to be used is the fractal-multifractal 
representation (FM), as introduced by Puente [1992, 1994]. 
The basis for developing such an approach is the fact that latest 
developments in physics recognize (1) the relevance of details 
in our ability to predict and (2) the possibility of describing 
apparently random sets by means of simple deterministic rules 
[e.g., Moon, 1987]. 

The idea behind the FM approach is to think of the complex, 
jagged, and intricate hydrologic patterns as projections of frac- 
tal functions which are "illuminated" via simple multifractal 
measures. An important trait of the FM approach is that it is 
entirely deterministic. Also, it does not require any statistical 
assumptions such as stationarity or ergodicity or a minimal 
length for the records under study. As will be illustrated, the 
FM representation results in "random-looking" outcomes 
which are not random at all and which resemble actual rainfall 

(geophysical) records, not only in their appearance but also in 
{heir statistical, multifractal, and chaotic properties. This last 
point will be shown finding a FM approximation of an 8-hour 
storm recorded in Boston every 15 s. 

2. The Fractal-Multifractal Approach 
A large number of deterministic measures may be obtained 

using the FM methodology [Puente, 1992, 1994]. These mea- 
sures dy are defined following a classical derived distributions 
approach, using a generic multifractal dx as the parent distri- 
bution and a fractal interpolating function f as the transforma- 
tion (dy = dx o f- •). The two components that make up the 
9onstruction, dx and f, and how they are combined are re- 
viewed next. 

The classical cascade model in turbulence gives rise to the 
most generic multifractal measures. The binomial multiplica- 
tive process results in a binomial multifractal measure as fol- 

lows. Begin with a uniform distribution over an interval I, say, 
[0, 1], and select an intermittency (redistribution) parameterp, 
0 < p < 1. Then, redistribute the mass such that in the 
interval [0, 1/2], p % of the mass is uniformly distributed and 
likewise the remaining (1 - p)% in the interval [1/2, 1]. 
Repeat this same process on each of the uniform pieces, ad 
infinitum, to arrive at a deterministic binomial multifractal 
measure with parameter p. A sketch of such a measure, dx, is 
shown in the bottom of Figure 1 forp -- 0.3 and for 13 stages 
in the cascade. As is seen, the measure dx is multifractal, i.e., 
it is singular and contains (in the limit) infinitely many layers 
which correspond to intertwined Cantor sets in x. General 
deterministic multifractals may be constructed by splitting the 
mass into more than two pieces and by using different length 
scales [Mandelbrot, 1989]. 

The set of transformations used in the context of derived 

distributions are the fractal interpolation functions introduced 
by Barnsley [1986, 1988]. These are continuous functions f that 
interpolate a given set of N + 1 points in the plane { (Xo, Yo), 
(xi, Yi), "', (XN, YN); XO < Xi < "' < Xn) and whose 
graphs may be fractal. They are obtained iterating N contrac- 

N 
tile afiSne mappings W n such that G = U n = 1 tOn (G), where 
G = {(x, f(x)): x • [x o, XN]} is the graph off. The 
following are the mappings used and the conditions that guar- 
antee the existence of a unique (and hence deterministic) set G: 

such that 

x 

Wn(y) ---- ( an •n)(;) -It- (•n n) (1) Cn ' 

Wn(;:) = (Xn-ll Wn(•;) • (•) (2) Yn-1/ ' 

and 0 -< I dnl < 1, for n = 1,..., N. 
These previous equations allow solving for the parameters 

an, C n, e n, and fn in terms of the interpolating points' coor- 
dinates and the "free" scaling parameters dn. The fractal di- 
mension D of the graph of an interpolating function is (1) D > 

D--1 1, if Eldnl > 1, and (2) 1 if 1, the solution of X;Idnla n - 
•ldnl -< 1 [Barnsley, 1988]. Figure 1 includes an example of a 

dy 

dyz 

z z 

y 

dx 

dz x 

Figure 2. Three-dimensional fractal interpolator projections 
and derived measures: {(0, 0.1, 0), (0.5, 1, 0.4), (1, 0, 0.2)}. 
Here r? ) = r? ) = -0.6, 07 ) = 07 ) = 45, r? ) = 0.6, 
r(22) = -0.6, 07 ) = 0(22) = 45, p• = 0.3, P2 = 0.7. Angles 
are in degrees. 
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Figure 3. Projections from two-dimensional fractai interpoiators and a storm in Boston. 

fractal interpolating function f that passes by the three data 
points ((0, 0), (0.5, -0.35), (1, -0.2)) shown by the solid dot 
and which has dx = -0.8 and d2 - -0.6. Observe that the 
graph G is a self-a•ne fractal set with dimension D = 1.48. 
For details on how to generate the fractal interpolating func- 
tions in practice, see Barnsley [1988] and Puente [1994]. 

Figure 1 also illustrates how the derived distributions ap- 
proach is used to transform a binomial multifractal measure dx 
via a fractal interpolating function f, in order to determine a 
derived distribution dy. Mathematically, dy is defined consid- 
ering all relevant parent events in x and adding their measures, 
i.e., dy(B) = dx(f-•(B)) = dx{x: f(x) • B), for a Borel 
subset B. The measure dy can be interpreted as a weighted 
projection of the function f, with the weights given by dx. 

A great variety of derived measures are obtained by varying 
the parameters off and dx [Puente, 1992, 1994]. Depending on 
the nature of the fractal interpolating function, the following 
overall behavior is found. When the fractal dimension D is 

close to one, the derived measures are (1) singular (i.e., mul- 

tifractal) and (2) not strictly self-similar nor self-atfine. As D 
grows from one to two, the measures (1) progressively become 
absolutely continuous (i.e., have a density) and (2) in the limit 
become Gaussian. 

Given the relevance of multinomial multifractals to repre- 
sent intermittent natural phenomena, [e.g., Meneveau and 
Sreenivasan, 1987; Sreenivasan, 1991], the derived measures 
have a physical interpretation: They could be thought of as 
images or "projections" of turbulence. The seemingly random 
appearance and the complex intermittency of the measures dy 
(e.g., see Figure 1) represents the basis for trying to use the FM 
approach to model complex series, as the ones given by rain- 
fall. It is worth emphasizing that having dy not strictly self- 
similar or self-atfine is a welcomed property, since a common 
objection against the use of fractal geometry has been that 
natural objects do not exhibit such geometric behavior ad in- 
finitum. 

It is important to stress some merits that the FM approach 
may have over other methods currently in use. First, the FM 
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Figure 4. Projections from three-dimensional fractal interpolators and a storm in Boston. 

approach is entirely deterministic: Both the parent multifractal 
measure and the transforming mapping may be uniquely ob- 
tained via simple recursive procedures [Puente, 1994]. The data 
at hand are interpreted as a normalized distribution, a proba- 
bility measure, which is encoded via a parent multifractal mea- 
sure and a unique fractal interpolating function. Second, in- 
stead of concentrating on the statistics of the actual 

realization(s), the FM approach focuses on a wholistic descrip- 
tion of geophysical patterns. Rather than concentrating on 
describing or characterizing the distribution of the data, the 
FM approach uses derived distributions to describe the data. It 
appears that the FM procedure, or others based on a similar 
idea, may provide a very parsimonious representation of nat- 
ural data sets. 

Table 1. Surrogate Parameters for "Storms" in Figure 3 

Localization Regularity Intermittency 

Storma Xo Xl X2 X3 X4 Y0 Yl Y2 Y3 Y4 dl d2 d3 d4 Pl P2 P3 P4 

1 -0.055 0.158 0.324 0.753 0.936 0.77! 0.077 0.241 -0.337 -1.142 -0.747 -0.082 0.482 0.744 0.331 0.160 0.135 0.374 
2 -0.050 0.160 0.320 0.750 0.940 0.770 -0.500 -0.500 0.500 -0.800 0.750 -0.080 0.480 -0.500 0.330 0.160 0.140 0.370 
4 -0.047 0.149 0.418 0.750 0.949 -0.853 0.566 0.598 -0.530 0.004 0.745 0.058 -0.172 -0.475 0.308 0.173 0.168 0.351 
5 -0.062 0.162 0.312 0.757 0.940 0.780 -0.021 0.129 -0.355 0.883 -0.739 0.073 -0.500 0.598 0.322 0.191 0.142 0.345 

6 -0.060 0.161 0.339 0.771 0.903 0.768 0.324 0.416 -0.338 -1.108 -0.759 -0.062 0.500 0.723 0.313 0.149 0.114 0.424 

Numbers correlate with panels in Figure 3, starting at the top. 
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Alternative derived distributions. may be obtained by con- 
sidering fractal interpolating functions over higher dimensions 
[Barnsley, 1988; Barnsley et al., 1989]. Analogous to the two- 
dimensional case, one may consider N + 1 data points, { (Xn, 
Yn, Zn): XO < '" < XN; n = 0, 1, "', N}, and a set of N 
contractile maps of the form 

W n -cndnhn +fn, 
kn In mn an 

such that 

(3) 

An = dn hn r? COS 0(n 1) .(2) ,.l•. ta(2)\ In mn r? sin 0(n 1> r(2) ,',,• a(2> ] (4) 

Table 3. Relevant Statistics for Real and Fractal- 
Multifractal Fitted Storms in Boston 
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Statistic Order Real value Fitted value 

M(y) 

M(y) * 

M(ey) 

) 
has norm less than 1 (i.e., square root of maximum eigenvalue 13 
of A nrA n < 1 ) and ,(q) 

(5) W n YO = Yn , 
\ ZO/ Zn 

W n YN = Yn , 
ZN Zn 

for n = 1, ..., N. Now a three-dimensional "wire" G = 
w • (G) t_J ... t_J wN(G) appears, the graph of a continuous 
deterministic function f from [Xo, x•] to the yz plane. This 
function perfectly interpolates the N + 1 data points, provided 
that all scaling parameters r(n i) have magnitudes less than 1. 
The construction for a three-dimensional fractal interpolating 
function leaves now four free parameters per map, with an, C n, 
en, fn, an, and k n all determined in terms of r(n •), r(n 2), 07 ), 
0(n 2), and the N + 1 data points. As in two dimensions, G 
becomes fractal as the magnitude of r(n i) increases toward 1 
[Barnsley, 1988; Puente and Klebanoff, 1994]. 

Figure 2 is analogous to Figure 1 for the three-dimensional 
case. In addition to a parent measure in x, a fractal interpo- 
lating function from x to y, and a derived measure in y, now 
there are also an interpolating function from x to z (a projec- 
tion of the unique wire in the x - z plane), a derived measure 
in z, and a joint derived measure in yz. The advantage in going 
to higher dimensions is that "hidden" relationships between 
processes in y and in z can now be incorporated. As may be 
seen, rainfall in time may be modeled by considering either d y 
or dz. Notice that as in the two-dimensional case, these mea- 
sures possess intermittency properties typically observed in 
nature. 

In summary, the FM approach relies on the description of 
intermittent (normal•ed) data sets as weighted projections of 
fractal interpolating functions. The relevant parameters that 
need to be specified for a given data set are (1) the points by 
which the fractal interpolation function passes (localization 
parameters); (2) the scalings (and rotations) (regularity param- 

Table 2. Relevant Surrogate Parameters for "Storms" in 
Figure 4 

Localization 

Storma Y 2 Z 1 Z 2 

1 0.0 0.90 -0.20 
2 0.1 0.40 0.20 
4 0.0 1.00 0.00 
5 0.1 0.50 0.00 
6 0.1 0.20 0.40 

Numbers correlat e with panels in Figure 4, starting at the top. 

D(1) 

1 0.445 0.439 
2 0.237 0.215 
3 0.265 0.211 
4 2.502 2.412 
1 0.547 0.535 
2 0.258 0.235 
3 -0.854 -0.925 
4 2.272 2.273 
1 0.075 0.077 
2 0.074 0.072 
3 3.643 3.169 
4 28.76 24.65 

23 16 

2.711 2.686 
-1.0 2.034 2.139 
-0.2 1.204 1.202 

0.6 0.396 0.396 
1.4 -0.391 -0.392 
2.2 -1.161 -1.153 
3.0 - 1.908 - 1.873 
3.8 -2.629 -2.545 
4.6 -3.330 -3.184 
5.4 -4.014 -3.803 
6.2 -4.688 -4.411 

0.982 0.984 

eters), and (3) the parent multifractal redistributions (inter- 
mittency parameters). 

3. Preservation of Overall Features 

It is shown in this section that it is possible to find parameter 
combinations, both for two- and three-dimensional fractal in- 
terpolating functions, such that the derived distributions they 
produce resemble actual rainfall records. In order to illustrate 
this point, a variety of derived measures are shown in Figures 
3 and 4 for two- and three-dimensional fractal interpolating 
functions, respectively. So that comparisons could readily be 
made, these measures were generated having the same size of 
an October 25, !980, storm gathered in Boston every 15 s (i.e., 
1990 data points) and were scaled so that they all have the 
same intensity range as the actual storm (in 100 x millimeters 
per 15 s). In both figures, made of six series, the data set 
depicting the Boston storm is included in the third panel from 
the top. 

As may be seen, all "storms" have features which are similar 
to those of the Boston data: They have a large peak, few 
intermediate ones, and low intensities which appear to contain 
noise. Observe that the deterministic FM representations re- 
sult in measures which resemble the details present on actual 
records at a wide range of scales. In fact, it is not easy to 
discriminate between the real series and those that were gen- 
erated, as these latter representations do share similar statis- 
tical and multifractal characteristics. A complete comparison 
between the first deterministic storm in Figure 3, which cap- 
tures well the timing of the major peak, and the actual records 
from the Boston storm will be given in the next section. 

All projections in Figure 3 were obtained from a two- 
dimensional fractal interpolating function that passed by five 
data points. Table 1 includes all the FM parameters that were 
used. The projections in Figure 4, on the other hand, came 
from three-dimensional fractal interpolating functions which 
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Figure 5. Fitted and real rainfall records for the storm in Boston. The FM parameters are those of the first 
storm in Table 1. 

passed by three data points. Table 2 includes the varying FM 
parameters for these cases, as they always share x o = 0, x• = 
0.5, X 2 = 1, yl = 1, Y2 = 0, z o = 0; r(• •) = r(• 2) = -0.6, 
0(11) -- 012) = 45, 1'(21 ) -= 0.6, r(22) --- -0.6, 07) = 0(22) =- 
45; andp• = 0.3, P2 = 0.7. The angles above are in degrees. 

A pictorial representation of the building blocks of the sec- 
ond graph from the top in Figure 4 was already given in Figure 
2. In fact, the second storm corresponds to the measure dz in 
Figure 2 (be aware of proper orientation). 

4. A Fitted Storm for the Boston Records 
It is easy to verify that the FM approach is continuous with 

respect to its parameters, i.e., small changes in either dx or f 
yield a small change in the outcome dy. Unfortunately, there 
is no simple analytical formula that gives the derived measure 
dy, or its most common statistics, in terms of these parameters. 
This implies that the inverse problem of finding the FM pa- 
rameters for a given data set cannot be obtained analytically 
but rather requires a numerical solution. At the end, this in- 
verse problem becomes nontrivial due to (1) the large number 
of combinations of surrogate parameters (even with few inter- 
polating points) and (2) the practically infinite number of de- 
rived measures that may be generated, many sharing common 
statistical and multifractal features. It has been our experience 

that a cataloging exercise is a must before attempting any 
sophisticated search algorithm. 

Besides interacting with a catalog, it is clear that a multidi- 
mensional optimization procedure and a properly defined ob- 
jective function are required to fine-tune the FM parameters 
corresponding to a data set. This section reports the results 
obtained with a heuristic two-step optimization procedure 
which was found reliable after extensive experimentation. The 
method relied on the multidimensional simplex method [Press 
et al., 1989] to obtain preliminary FM parameters and on 
simulated annealing [Otten et al., 1989] and sequential qua- 
dratic programming [Zhou and Tits, 1993] for fine tuning. 

The multidimensional simplex method was used from an 
initial simplex defined around a set of FM parameters from the 
catalog, which resulted in "reasonable" visual agreement with 
the records at hand. In order to specify the procedure, an 
objective function was defined accounting for weighted sums of 
squared differences between qualifters of the real and FM 
records. These attributes included classical statistical indica- 
tors and multifractal characteristics: (1) the first ten moments 
around the mean in the time axis, (2) the first ten moments 
around the mode in the time axis, (3) the first ten moments 
around the mean in the intensity axis, and (4) the mass expo- 
nents r(q) (-2 <= q <= 7, at 0.2 increments), which 
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Figure 6. Statistics for the observed storm in Boston: autocorrelation (p(,)), power spectrum (S(•o)), data 
histogram (f(dy)), and multifractal spectrum (f(a)). 

account for the sca. ling laws of the qth-order mo_ments of the 
data sets (t•): 

• [/J•i(/5)]q • /5-*(q), (6) 
i 

where t•i(/5 ) is the total measure (mass) in the ith piece of 
resolution/5. 

Each one of the entries on the four sets of attributes above 

had a component in the objective function having as general 
structure wi(1 - qi/Oi) 2, where wi is the weight of the ith 
attribute, with q i and O i representing the FM and real at- 
tributes, respectively. The weights on each of the sets were 
determined as follows: (1) For the moments they decrease 
linearly as the order of the moment increases and (2) for the 
mass exponents they are constant. In addition to the individual 
weights just explained, a set of four extra weights was defined 
in order to properly give emphasis to the four classes of at- 
tributes considered. These were determined using the initial 
FM parameters around which the initial simplex was built, in 
such a way that at that point in space, all four sets of attributes 
contribute to the objective function equally. In order to have a 
dynamic procedure that builds on current knowledge, these 
four weights were modified before starting the second stage in 

the optimization procedure. The best parameter values found 
via the multidimensional simplex method were used to rede- 
fine such quantities. 

Clearly, the procedure used for assigning weights is by no 
means unique, as it may be modified in a number of ways. It is 
worth remarking, however, that the objective function selected 
did not account explicitly for the autocorrelation or power 
spectra of the real and FM records. In regards to usage of the 
optimization algorithms, it should be added that no particular 
care must be exercised other than demanding that the mathe- 
matical structure of the model be preserved, for example, 
Idnl < 1, •Pn = I, etc. 

The "optimal" fit obtained for the storm in Boston was 
already included as the top storm in Figure'3. Figure 5 shows 
the whole FM construction and the Boston records, for the 
best fitted parameters as reported in the first row of Table 1. 
Table 3 provides relevant statistical information for the ob- 
served and fitted data sets. These statistics include the follow- 

ing: central moments for the records seen from the time axis, 
M(y); moments around the mode for records seen from the 
time axis, M(y) *; central moments computed from the rainfall 
intensity axis, M(dy); time lag where first local minimum of 
autocorrelation function happens, ,(tim); the scaling expo- 
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Figure 7. Statistics for the FM fitted storm in Boston: autocorrelation (p(•')), power spectrum (S(•o)), data 
histogram ( f(d y ) ), and multifractal spectrum ( f( a ) ). 

nent/3 for the power spectrum at large frequencies, i.e., S( 
--• to-s; mass exponents •'(q) for the indicated orders q; and 
the information dimension for the data, D(1) = -d•'(q)/dq 
at q = 1, which measures the dimension of a Cantor set where 
the measure concentrates [Feder, 1988]. The mass exponents 
above were computed fitting the best regression to equation 
(6) using four consecutive resolutions & in powers of 2. 

As may be seen, the FM description (having 17 parameters: 
10 coordinates, 4 scalings, and 3 independent intermittencies) 
not only matches well the actual records pictorially, but it also 
preserves the optimized statistical and multifracta! character- 
istics of the Boston storm. As observed in Table 3, excellent 
agreement is found for all moments of orders less than 4, with 
modal moments on the time axis being sl!ghtly better than 
those found around the mean. This fact is a clear indication 

that the FM representation nicely captures the timing and 
location of the largest peak observed. Even though no auto- 
correlation function attributes were accounted for in the opti- 
mization exercise, the first local minimum of the autocorrela- 
tion function (oftentimes used to define a scale for chaotic 
analYSiS; see next section) was properly preserved, i.e., 16 ver- 
sus 23 lags are very close, considering that the time series 
studied are made of 1990 values. A close agreement on power 

spectrum scaling (also not accounted for during the optimiza- 
tion) was also found, as evidenced by a FM fitted exponent/3 
(computed for frequencies greater than 0.4) which differs by 
only 1% from the exponent of the real records. As is seen, the 
mass exponents function z(q) is nicely captured, especially for 
values of the order q between -1 and 3. The information 
dimension D (1) is also fitted accurately. 

In order to further verify how the FM fit behaves, Figures 6, 
7, and 8 compare relevant functions of the observed and FM 
fitted records from Boston. Observe that despite the duration 
of 1990 data points for the records in Boston, the FM projec- 
tion provides reasonably close fittings of both the autocorre- 
lation function and the power spectrum of the actual data. 
Notice the similarity in the shapes of these functions, with the 
autocorrelation of the actual data being rougher than the one 
predicted by the FM approach, which qualitatively maintains 
the delays where the autocorrelation equals e -• and 0, and 
with the power spectrum of the predicted records exhibiting a 
less stable power law behavior than the actual records (in terms 
of regression fit). 

For the data histogram (f(dy)), there is indeed a good 
visual agreement and excellent fit of the moments as previously 
reported in Table 3. Overall, the moments in both time'and 
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Figure 8. Moments for observed and FM fitted (*-*) storm in Boston: central moments in time (M(y)), 
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intensity axes are very well preserved for orders not considered 
during the optimization exercise. As seen in Figure 8, this 
happens for time moments of orders up to 15. 

As previously included in Table 3 and as depicted in Figure 
8, the mass exponents functions of the actual records are nicely 
preserved by the FM representation. This implies that the 
multifractal spectra, f(a) versus a, for the observed and fitted 
storms (found via Legendre transforms: a = - d,/dq and 
f(c•) = aq + r(q)) should be close, especially for values of q 
between -1 and 3. Indeed, the bottom right-hand comers of 
Figures 6 and 7 exhibit good agreement between real and FM 
fitted multifractal spectra, especially for its left-hand portion. 
This means that the FM approach preserves the codimension 
function Of the data, i.e., the scaling structure which corre- 
sponds to large singularities. As real and fitted mass exponents 
deviate for large magnitudes of the exponent q, the multifrac- 
tal spectra of both series differ in both their tails. It is clear that 
the right-hand portion of the predicted multifractal spectrum is 
not pres6rving the scaling on the very small values present in 
the data, even while changing the number of resolutions con- 
sidered to define the number of regression points nr used in 
equation (6). This fact and the observation that many multi- 
fractal models exhibit instabilities on the right-hand side 
branch of the spectrum suggest that negative values of q may 
have been omitted from the optimization exercise. Overall, the 
entropy dimension, a stable qualifter of the spectrum, is well 
preserved by the FM measure. This is particularly true for 
regressions made with four and seven resolutions. 

5. Are Rainfall Time Series Chaotic? 

Whether rainfall may be viewed as a deterministic chaotic 
process has attracted attention in the literature [e.g., Ro- 
driguez-Iturbe et al., 1989]. Given that it is possible to model 
complex data sets by means of the FM approach, it is relevant 
to ask if the outcomes of the deterministic procedure lead to 
deterministic chaos. This section studies this question by ana- 
lyzing the actual records and the "best" representation for the 
Boston storm. 

The specific chaotic analysis carried for both series relies on 
standard tests as defined in the literature. The actual steps 
undertaken are as follows: (1) phase-space reconstruction of 
the time series using a time delay [e.g., Packard et al., 1980]; (2) 
determination of minimal embedding dimension via correla- 
tion dimension stabilization [e.g., Grassberger and :Pro'caccia, 
1983; Grassberger, 1990]; (3) verification of chaotic behavior via 
K2 entropy [e.g., Provenzale et al., 1991]; (4) verification of 
minimal embedding dimensioh via the false neighbors algo- 
rithm [e.g., Kennel et al., 1992]; and (5) verification of sensitiv- 
ity to initial conditions via a positive Lyapunov exponent [e.g., 
Wolf et al:, 1985]. 

The results of the analysis for both of the Boston "records" 
are included in Figures 9-12. Figures 9 and 11 include the 
correlation dimension analysis and K2 entropy calculations 
using a delay r that corresponds to the first local minimum of 
the autocorrelation function of the real records (i.e., 23). 
These figures include the following information. 
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Figure 9. Observed storm in Boston correlation dimension and K2(N ) entropy. Figure 9a shows phase- 
space correlation functions; Figure 9b shows local slopes of correlation functions; Figures 9c, 9d, and 9e show 
correlation dimensions for five large, five intermediate, and five small distances r, respectively, as indicated 
from right to left on the uppermost correlation function in Figure 9a by the plus signs, asterisks, open triangles, 
open squares and crosses; Figure 9f shows K 2 mean entropy and one standard deviation band; and Figure 9g 
shows 1/K 2 and one standard deviation band. 

Figures 9a and 11a show the phase-space correlation func- 
tions Cs(r), which "count" the number of points, in a phase 
space with N coordinates, whose distances are less than r. 
Figures 9b and lib show the local slope of Cs(r) (computed 
via lag-one differences). Figures 9c and 11c, 9d and lid, and 9e 
and lie show the correlation dimensions V•v, defined from the 
scaling relation Cs(r) "• r vN, computed for five large, five 
intermediate, and five small values of the distance r, respec- 
tively. Such values are indicated on the upper correlation func- 
tion curve (i.e., for two coordinates) and are found via a re- 
gression of three successive points ending with the symbol in 
question; for example, the values reported for V•v and the plus 
sign are obtained employing Cs(r) for distances indicated by 
the open triangle, the asterisk, and the plus sign. Figures 9f and 
11f show the average K2(N ) entropy, defined as the logarithm 
of the ratio of two consecutive phase-space correlation func- 
tions, found for the "stable" region in the correlation function 

slope and the band of plus and minus one standard deviation, 
and Figures 9g and 11g show the average value of 1/K2(N ) and 
its corresponding band of one standard deviation. 

As may be seen in Figures 9a and 1 l a, the computed corre- 
lation functions for both observed and fitted records, consid- 
ering up to ten coordinates, are not perfect straight lines in 
log-log scale. This leads to stable and unstable local slopes 
(found from two successive points), as indicated in Figures 9b 
and 1 lb. While the actual data leads to a slope valley between 
two mounds, the local slopes on the FM fitted records show 
only one mound at small distances. Notice from Figures 9c, 9d, 
and 9e that the real data exhibit stable correlation dimension 

estimates (found via a regression of three consecutive points) 
in the intermediate zone, yielding a correlation dimension of 
3.68; see the graph with the crosses in Figure 9d. The FM 
records, on the other hand, also lead to stable behavior and a 
close correlation dimension of 3.44, but now for the asterisk 
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Figure 10. Observed storm in Boston: false neighbors for alternative delays (r) and largest Lyapunov 
exponent for alternative dimensions (No). 

corresponding to a small distance, i.e., Figure 11e. These cor- 
relation dimensions are quite close to the value of 3.78 re- 
ported for this storm by Rodriguez-Iturbe et al. [1989]. 

The K2(N ) entropy analysis yields inconclusive results for 
both the real and FM fitted storms. As may be seen in Figures 
9f and 9g and 11f and 11g, K 2 remains positive for all embed- 
ding dimensions N, but no apparent stabilization of either 
K2(N ) or its inverse is attained. The short length of the time 
series precludes a more complete analysis regarding this at- 
tribute. Notice, however, that the behaviors of real and FM 
fitted K2(N ) entropies are quite similar. 

Figures 10 and 12 verify the correlation dimension results by 

bounding the optimal embedding dimension using the method 
of false neighbors [Kennel et al., 1992]. By following the evo- 
lution of points in phase-space and keeping track of points that 
remain close dynamically, a verification of a true attractor is 
made. These figures also include the largest Lyapunov expo- 
nents under alternative conditions, i.e., the growth in phase 
space of the largest principal axis in which an initial sphere 
progressively deforms [Wolf et al., 1985]. Notice that the per- 
centage of false neighbors behaves very similarly for both real 
and FM fitted records. As is seen, there is a marked decrease 
in false neighbors as the embedding dimension is increased 
from 2 to 4 for delays r that range from 8 to 32. At this stage, 
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the percentage of false neighbors falls in all cases below 10%, 
and only a mild rise is observed thereafter. These results 
clearly support the validity of the correlation dimension values 
given before. 

The largest Lyapunov exponent (h•) for both real and FM 
fitted series is given in Figures 10 and 12 for an optimal em- 
bedding of No = 4 and for a couple of plausible delays •. The 
results for the real data are clear. A positive Lyapunov expo- 
nent is found for both delays considered. For the predicted 
records the Lyapunov exponents vary in character. For most of 
the time, h• gives positive values which signify chaotic behav- 
ior, but there are series durations for which negative values are 
found. Overall, the behavior of both real and predicted records 
is similar in relation to the largest Lyapunov exponent: Notice 
that the scales on both cases are quite close and that, indeed, 
positive values are found. Compare in particular the cases 
when •-= 16. 

In order to avoid issues related to the small length of the 
time series, the FM procedure was used to obtain a refinement 
of the Boston records over 2 TM points. A complete analysis of 
these "records" confirmed the chaotic nature of the FM pro- 
jection which nicely approximates the Boston data at the lower 
resolution. This time, a correlation dimension close to 3.2 was 
found, and the percentage of false neighbors also came below 
10% for four embedding dimensions. This time a positive larg- 
est Lyapunov exponent was found, even for the duration of the 
series. 

6. Summary and Conclusions 
A deterministic geometric framework for the description of 

complex hydrologic (geophysical) time series has been re- 
viewed. The approach relies on the use of fractal-geometric 
objects and in particular on the combination of fractal inter- 
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polation functions and multinomial multifractal measures. It 
has been illustrated, by means of examples, that some derived 
measures produced by the fractal-multifractal (FM) procedure 
resemble high-resolution rainfall records, both for two- and 
three-dimensional fractal interpolating functions. 

A faithful FM representation of a high-resolution storm in 
Boston has been presented in this work. A detailed comparison 
of the real and FM fitted time series reveals that the geometric 
procedure not only captures the timing and size of the largest 
peak but also preserves the overall appearance of the actual 
records, including secondary peaks and small noisy fluctua- 
tions. The FM representation was reached minimizing a 

weighted sum of squared differences between attributes of the 
real and FM outcomes of equal length. The obtained "opti- 
mal" solution indeed preserves the following attributes, explic- 
itly accounted for in the objective function: (1) the first ten central 
and modal moments of the records when seen from the time axis; 
(2) the first ten central moments of the records as seen from the 
intensity axis; and (3) the mass exponents function of the data. 
The FM representation also captured (1) higher-order moments 
along both the time and intensity axes; (2) the overall shape of the 
autocorrelation and histogram functions for the records; (3) the 
scaling properties present in the power spectrum of the data; and 
(4) the chaotic nature of the set of observations. 
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Since similarly faithful FM representations (to be reported 
elsewhere) have also been found for a couple of the high- 
resolution storms (one having two peaks) gathered in Iowa 
City every 5 s by Georgakakos et al. [1994], these results imply 
that there may be no need in separating trends and (arguably 
unimportant) small fluctuations when dealing with rainfall 
records. In fact, this work suggests a new global perspective for 
understanding rainfall, a perspective in which major features 
and noisy details are captured jointly. Clearly, the presented 
analysis hints that a stochastic framework for rainfall modeling 
may not be necessary and reveals that the notion of projections 
may provide the proper alternative. The FM procedure is in- 
deed quite general, as it may generate patterns of arbitrary 
lengths with a multitude of peaks and records which contain 
periods of no rain. This last point is easily made using a Can- 
torian measure to compute weighted projections. 

There are of course unanswered questions regarding the FM 
methodology, which need to be studied in the future. These 
include (1) the complete understanding of the kinds of mea- 
sures that may be generated by the FM procedure; (2) the 
search for efficient algorithms (including the proper objective 
function) to properly describe real hydrologic (geophysical) 
data sets like the one analyzed here; (3) the identification of 
the most parsimonious representation (with the least possible 
number of interpolating points) of a given data set; and (4) the 
determination of the physical meaning that the FM parameters 
may possess. 

Clearly, the merit of the FM methodology to represent data 
sets will rest on our ability to solve the proper inverse problem 
in the least possible amount of time. As argued by Puente 
[1996], rainfall (geophysical) data sets are unique "signatures" 
of the physical, chemical, and biological processes taking place 
within the atmosphere, and understanding the geometry of 
these records may be very valuable for rainfall modeling and 
prediction. It is envisioned that once FM parameters are avail- 
able for subsequent data sets, such surrogate geometric infor- 
mation may be useful to study the dynamics of rainfall. If 
trends in FM parameter space may be elucidated, this may lead 
to predictions of rainfall by chunks. Instead of allowing pre- 
dictions few time steps ahead at a time (e.g., minutes, hours, or 
days ahead), the FM approach may result in wholistic repre- 
sentations of rainfall records at the same timescale as the input 
data used and with a size equal to the sizes of the records used 
to obtain the relevant trends on FM parameters. A plausible 
interpretation of the FM parameters should be elucidated 
when the ideas are tested under alternative climatic conditions. 

It is important to emphasize that the present work, although 
dealing with the concept of multifractality in rainfall, is not 
fully comparable to the work on rainfall that relies on param- 
eterizations of the record's multifractal spectrum in terms of 
stochastic cascades, for example, Lovejoy and Schertzer [1990], 
Rajagopalan and Tarboron [1993], and Over and Gupta [1994]. 
Although such models are more parsimonious than the FM 
procedure, they treat the data as a realization of a stochastic 
process whose prevalent characteristic is the multifractal spec- 
trum and therefore cannot account for the uniqueness of the 
data at hand. The deterministic FM approach, on the other 
hand, seeks understanding of the whole and unique data set, 
leading to an approach which preserves the multifractal spec- 
trum, other important qualifters of the records, and the overall 
geometric appearance of the data. 
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