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1. Introduction 

Understanding hydrological systems is crucial not only for the proper management of water resources but also 

for elucidating possible climate change impacts. There is not just a single variable playing a vital role in this 

regard but rather several geoscience signatures, such as precipitation, temperature, streamflow, and others. 

With the advancement of computational capabilities, various geophysical-hydrological models have 

been proposed that try to account for the physical processes behind available data and for the seemingly 

stochastic character of the records.  Irrespective of how this is attempted, the overall objective of these efforts 

is to try to understand the nonlinear and, hence, complex dynamics involved. Beyond the simplified nature of 

the assumed notions, these models end up requiring meaningful geophysical parameters, which, as they are 

often hard to acquire, may lead to misinterpretations. Despite the fact that we are in a computational era, fully 

understanding and, hence, fully recognizing the intrinsic variability of signals is still challenging. This is the 

case as records contain intricate, “chaotic,” and, altogether, convoluted details. 

Given that natural time series are typically erratic, noisy, and intermittent, it has become natural to 

model them using stochastic (fractal) theories, that also account for statistical self-similarity (e.g., Mandelbrot 

1982, Feder 1988). Specifically, in order to model complex natural signals several efforts have been made 

implementing stochastic theories (e.g., Rodríguez-Iturbe 1986), stochastic-fractal theories (e.g., Gupta and 

Waymire 1990, Lovejoy and Schertzer 2013), and chaotic analysis (e.g., Sivakumar 2000, 2004). These kinds 

of efforts, however, result in representations that are quite difficult to condition. As such, they may miss the 

specific convoluted details present in a given natural set, such as the exact locations of major peaks.  

Given the intrinsic limitation in assuming that what is seen is a realization of a stochastic process, a 

geometric approach, combining both fractal and multifractal notions, and known as the Fractal-Multifractal 

(FM) method was introduced (Puente 1996). Such a deterministic method models random-looking natural sets 

as fractal transformation of multifractal measures and results in a host of patterns that indeed share the same 
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geometric and statistical features of natural records (Puente 2004). In fact, the FM approach may be 

conditioned to not only preserve key statistical indicators (e.g. moments, autocorrelation function, power 

spectrum, multifractal spectrum) but also the inherent textures of data sets. 

The present chapter focuses on the application of such a notion in the context of geosciences research, 

especially in hydrology. From its inception, the FM procedure has advanced from encoding to understanding 

to predicting the complexity of natural records. In this spirit, the following sub-sections summarize our 

efforts: (a) encoding of mildly and highly intermittent records, (b) simulating mildly and highly intermittent 

sets, (c) disaggregating or downscaling such geophysical records, and (d) classifying sets geometrically 

aiming at the prediction of future scenarios. In what follows, the geophysical sets are limited to rainfall, 

streamflow, and water temperature, but, as will become apparent, the FM approach may be used to model 

several other sets. 

2. The Fractal-Multifractal Method 

Puente (1996) combined fractal functions and multifractal measures in order to model geophysical records in 

a holistic manner. This section briefly reviews the so-called Fractal-Multifractal (FM) method and also some 

of its variants, which have been found suitable to encode natural sets. 

2.1 Original Approach 

A fractal interpolating function 𝑓𝑓: 𝑥𝑥 → 𝑦𝑦, passing through 𝑁𝑁 + 1 ordered points on the plane {(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)| 𝑥𝑥0 <

𝑥𝑥1 … . < 𝑥𝑥𝑁𝑁}, is defined as the unique fixed point of 𝑁𝑁 affine maps (Barnsley 1988):  

𝑤𝑤𝑛𝑛 �
𝑥𝑥
𝑦𝑦� = �𝑎𝑎𝑛𝑛 0

𝑐𝑐𝑛𝑛 𝑑𝑑𝑛𝑛
� �
𝑥𝑥
𝑦𝑦� + �

𝑒𝑒𝑛𝑛
𝑓𝑓𝑛𝑛�             𝑛𝑛 = 1, … ,𝑁𝑁, 

(1)  
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so that the graph 𝐺𝐺 = {(𝑥𝑥,𝑓𝑓(𝑥𝑥) | 𝑥𝑥 ∈ [0,1]} satisfies 𝐺𝐺 = 𝑤𝑤1(𝐺𝐺) ∪ 𝑤𝑤2(𝐺𝐺) ∪ … …𝑤𝑤𝑁𝑁(𝐺𝐺). While the 

parameters 𝑑𝑑𝑛𝑛 are vertical scalings, |𝑑𝑑𝑛𝑛| < 1, the other parameters, 𝑎𝑎𝑛𝑛, 𝑐𝑐𝑛𝑛, 𝑒𝑒𝑛𝑛, and 𝑓𝑓𝑛𝑛, are evaluated from 

contractive initial conditions that guarantee the existence of function 𝑓𝑓, namely: 

𝑤𝑤𝑛𝑛 �
𝑥𝑥0
𝑦𝑦0� = �

𝑥𝑥𝑛𝑛−1
𝑦𝑦𝑛𝑛−1�,          𝑤𝑤𝑛𝑛 �

𝑥𝑥𝑁𝑁
𝑦𝑦𝑁𝑁� = �

𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�. 

(2)  

These equations give rise to simple linear systems of equations for the “other” parameters in terms of the 

vertical scalings and the coordinates by which the function passes. At the end, a convoluted “wire” function 𝑓𝑓 

is generated whose graph has a fractal dimension 𝐷𝐷 between 1 and 2. 

A fractal function may be produced via a point-wise sampling of the “attractor” 𝐺𝐺 iterating 

successively the affine maps. This process, known as the “chaos game” (Barnsley 1988), starts at a point 

within 𝐺𝐺 (say, an interpolating point) and progresses guided by arbitrary “coin tosses” that assign distinct 

usage proportions to the 𝑁𝑁 maps. Allowing enough time for the iterations, the process not only paints a graph 

𝐺𝐺 point by point, but also induces a unique invariant measure over 𝐺𝐺, which typically contains intermittencies 

and possesses multifractal properties. 

Seen over the coordinate 𝑥𝑥, such invariant measures define deterministic multinomial multifractals – 

with length scales given by the placements of the interpolating points in 𝑥𝑥 and with the proportions for the 

“coin tosses” defining the intermittencies – (Mandelbrot 1989, Puente 1996). When seen over the 

coordinate 𝑦𝑦, the invariant measures over 𝐺𝐺 define deterministic projections, which turn out to encompass 

some of the irregular shapes encountered in nature, such as rainfall, streamflow, temperature, and other sets.   

Fig. 1 illustrates how a binomial multifractal measure 𝑑𝑑𝑥𝑥 may be naturally combined with a fractal 

interpolating function to define an interesting output 𝑑𝑑𝑦𝑦. When the two maps 

𝑤𝑤1 �
𝑥𝑥
𝑦𝑦� = �0.80 0

2.91 −0.72� �
𝑥𝑥
𝑦𝑦� + �0

0�   
  (3) 
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and  

𝑤𝑤2 �
𝑥𝑥
𝑦𝑦� = � 0.20 0

−0.65 −0.54� �
𝑥𝑥
𝑦𝑦� + �0.80

2.19�, 
 (4) 

are iterated according to proportions 68–32%, they: (a) generate a fractal wire 𝑓𝑓 passing through 

{(0, 0), (0.80, 2.19), (1, 1)} (at the center of circles) and having dimension 𝐷𝐷 = 1.31; and (b) induce a 

simple binomial multifractal 𝑑𝑑𝑥𝑥 over 𝑥𝑥 – having length scales 0.8 and 0.2 and redistributions 68–32% – and 

also a unique and, hence, deterministic derived measure 𝑑𝑑𝑦𝑦 over 𝑦𝑦 – exhibiting non-trivial variability. 

 
Figure 1: The FM approach: from a multifractal 𝒅𝒅𝒅𝒅 to a projection 𝒅𝒅𝒅𝒅, via a fractal interpolating function 𝒇𝒇, a 
“wire” from 𝒅𝒅 to 𝒅𝒅. 𝒅𝒅𝒅𝒅𝒔𝒔 is a smoothed version of 𝒅𝒅𝒅𝒅. 

In a practical setting, 𝑑𝑑𝑦𝑦 is found as a histogram of all chaos game points over 𝑦𝑦, adding all “events” 

over 𝑥𝑥 corresponding to the crossings of function 𝑓𝑓 for a given value of 𝑦𝑦 i.e., 𝑑𝑑𝑦𝑦 =  𝑓𝑓−1(𝑑𝑑𝑥𝑥). By varying 

the parameters, and as shown on the far right graph in Fig. 1 via local integration, objects 𝑑𝑑𝑦𝑦 or 𝑑𝑑𝑦𝑦𝑠𝑠 turn out 

to be ‘‘random-looking’’ sets that do resemble geoscience records (Obregón et al. 2002b, Puente 2004). 

The FM procedure, besides transforming multifractals relevant in the study of turbulence, i.e., the case 

when 𝑑𝑑𝑥𝑥 has equal length scales and redistributions 70–30% (Meneveau and Sreenivasan 1987), may be 
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assigned a more direct physical interpretation (Cortis et al. 2013). This is the case as the measure 𝑑𝑑𝑦𝑦, although 

entirely deterministic, may be interpreted as a “realization” of a non-trivial but conservative multiplicative 

cascade, as customarily done via stochastic cascades of tracers (e.g., Lovejoy and Schertzer 2013). 

In summary, the modeling of geoscience records via the original FM method requires the solution of 

an inverse problem for suitable geometric parameters, namely: (a) the interpolating points by which a fractal 

function passes, (b) the vertical scalings 𝑑𝑑𝑛𝑛, (c) the frequencies used on chaos game calculations, and (d) a 

smoothing parameter depending upon the nature of a target set. When using two or three maps, the FM 

approach requires 6 or 10 parameters, hence leading to sizable compressions.  

2.2 Two Extensions 

Instead of defining a fractal “wire,” the procedure may be modified to generate more general attractors. Such 

may be done using 𝑁𝑁 maps as in Equation (1), but using new contractive initial conditions, 

𝑤𝑤𝑛𝑛 �
𝑥𝑥0
𝑦𝑦0� = �

𝑥𝑥2𝑛𝑛
𝑦𝑦2𝑛𝑛�   , 𝑤𝑤𝑛𝑛 �

𝑥𝑥2𝑁𝑁−1
𝑦𝑦2𝑁𝑁−1� = �

𝑥𝑥2𝑛𝑛+1
𝑦𝑦2𝑛𝑛+1�,       𝑛𝑛 =  1, … ,𝑁𝑁, (5)  

such that the range of map 𝑤𝑤𝑛𝑛 in 𝑥𝑥 becomes the more general interval [𝑥𝑥2𝑛𝑛,𝑥𝑥2𝑛𝑛+1], for 𝑥𝑥0 ≤ 𝑥𝑥2𝑛𝑛 < 𝑥𝑥2𝑛𝑛+1 ≤

𝑥𝑥2𝑁𝑁−1. When such sub-intervals contain gaps, the resulting attractors are Cantorian in nature (Maskey et al. 

2015) and when such ranges overlap or when the corresponding end-points in 𝑦𝑦 do not match as in Equation 

(2), the resulting attractors are not functions but instead are shaped as interesting “leaves” (Huang et al. 2013). 

Fig. 2 presents an example of an FM-based derived measure 𝑑𝑑𝑦𝑦 based on a Cantorian case, and Fig. 3 

does so for a leafy attractor. While both representations use two maps, the former uses as end-points {(0,0),

(0.39,−1.54)} and {(0.77,−5.0), (1,1)} and the latter {(0, 0), (0.23, 5.0)} and {(0.19, 0.01), (1, 1)}, as 

marked by circles. Whereas the scaling parameters and iteration frequencies for the first case are 0.28 and –

0.47 and 66–34%, for the second case they are 0.55 and –0.89 and 15–85%, respectively. 
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Figure 2: A generalization of the FM approach: from a Cantorian texture 𝒅𝒅𝒅𝒅, to a derived 𝒅𝒅𝒅𝒅, via a disperse 
attractor. 𝒅𝒅𝒅𝒅𝒗𝒗 is found pruning 𝒅𝒅𝒅𝒅 below a threshold 𝝓𝝓𝒗𝒗 and renormalizing. 

As seen in Fig. 2, the iterations of such maps generate a Cantorian attractor, which, as before, induces 

projections 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦. While 𝑑𝑑𝑥𝑥 contains multiple spikes and gaps reflecting the original hole of size (as 

marked by the second and third open circles), the derived distribution 𝑑𝑑𝑦𝑦 also exhibits holes, but not in an 

obvious repetitive fashion as 𝑑𝑑𝑥𝑥, hence becoming itself useful to model highly intermittent sets. In this spirit, 

the other entity in Fig. 2 (in the far right), named 𝑑𝑑𝑦𝑦𝑣𝑣, represents yet an additional adaptation found by using a 

vertical threshold (𝜙𝜙𝑣𝑣) in the construction, so that (after proper normalization) new sets having an increased 

number of zeros may be found. 

As seen in Fig. 3, the iteration of the corresponding maps for the second case yields other interesting 

patterns 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦. Now the overlap, also seen by the second and third open circles, results in a leafy 
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attractor that induces yet another representation 𝑑𝑑𝑦𝑦 whose smoothened version (not shown) may resemble, 

say, the diurnal or yearly variations of air or water temperature. 

 
Figure 3: Another generalization of the FM approach: from an input texture 𝒅𝒅𝒅𝒅, to a projection 𝒅𝒅𝒅𝒅, via a “leafy” 
attractor.  

For these extensions of the FM approach, the following are the key parameters needed for a suitable 

representation: (a) the end-points that define the more general attractor, (b) the vertical scalings 𝑑𝑑𝑛𝑛, (c) the 

iteration frequencies, and (d) a smoothing or a threshold parameter, if needed. When using two or three maps, 

these FM approaches require 8 or 15 geometric parameters, leading still to sizable compressions.  

3. General Strategy  

Even though the FM methodology is ultimately simple and computationally efficient – once a set of 

parameters is known – the finding of a suitable representation for a given set is not a trivial task. As there are 
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neither analytical formulas for attractors nor for the derived measures 𝑑𝑑𝑦𝑦, only a numerical solution is 

possible. Unfortunately, such is hampered by the dimensionality of the problem, the choice of the objective 

function, and the optimization algorithm used (Huang et al. 2013), which reflect a highly complex parameter 

space where local minima may happen based on distinct initial conditions. 

The results to be presented herein reflect our own experience throughout the years and are based on a 

generalized version of the particle swarm optimization (GPSO) algorithm and an objective function that 

minimizes squared errors of suitable attributes, either the accumulated data sets from beginning to end when 

encoding sets or statistical qualifiers for simulation purposes. 

Inspired by the collective social behavior of animals and the notion that all members of the swarm 

ought to be leaders, a “cloud” version of the PSO algorithm (Fernández-Martínez et al. 2010) is adopted – 

with 300 initial swarm populations used for generating FM parameters after 100 successive iterations. As just 

mentioned, the 𝐿𝐿2  norm (i.e., the root mean square error) of statistical attributes of the records is used to 

define an objective function. As an example, for encoding purposes such a function is 

𝜖𝜖𝑎𝑎𝑎𝑎  = �
1
𝑁𝑁
�(𝑟𝑟𝑖𝑖 − 𝑟𝑟𝚤𝚤�)2
𝑁𝑁

𝑖𝑖=0

 
(6) 

where 𝑁𝑁 is the number of data points; and 𝑟𝑟𝑖𝑖 and �̂�𝑟𝑖𝑖 are the 𝑖𝑖𝑡𝑡ℎ accumulated values of the original record and 

FM fit, respectively. In order to ensure that solutions share similar geometrical features with the target set, 

various penalties are also imposed on the objective function so that: (i) the maximum deviations on 

accumulated sets, 𝜖𝜖𝑚𝑚𝑚𝑚, at each point would not exceed 10%, and (ii) the length of the FM fit and the target set 

would not differ by more than 10%. At the end, results shown herein do satisfy such constraints. 

The evaluation of the resulting FM models is made using various statistics not included in the 

objective function. For this purpose, various statistical attributes, such as autocorrelation, histogram, and 

Renyi entropy functions, are evaluated in terms of Nash-Sutcliffe efficiencies (Nash and Sutcliffe 1970).   
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4. Encoding Geophysical Records 

The present section illustrates the applicability of the FM approach for encoding complex geoscience records, 

which may be categorized into two kinds: (1) mildly intermittent sets, such as rainfall events and typical 

streamflow and water temperature records gathered daily; and (2) highly intermittent sets, exhibiting 

considerable swings of activity and inactivity and a large numbers of zeros, such as daily rainfall records 

gathered over a year. These kinds of sets are now considered step by step. 

4.1 Mildly Intermittent Sets 

4.1.1 Rainfall Events 

Faithful FM encodings of high-resolution rainfall events in Boston and Iowa City, lasting for a few hours, 

have been presented in Puente and Obregón (1996), Obregón et al. (2002a, b), Cortis et al. (2009), and Huang 

et al. (2012a, b, 2013). Such studies revealed that the FM method, coupled with a suitable search procedure, is 

capable of preserving not only the overall shapes of the records but also their main statistical and multifractal 

properties. In regards to the Boston event, measured every 15 seconds, various FM representations based on 

three to five affine maps yield, for the accumulated objective function, 𝜖𝜖𝑎𝑎𝑎𝑎 in Equation (6), values smaller 

than 0.4% and maximum deviations in accumulated sets, 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚, that are less than a mere 1.4%. For four events 

gathered in Iowa City, every five seconds, results are comparable both geometrically and statistically, with 

𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 values that are consistently below 2.5%, for alternative variants of the FM method. 

4.1.2 Daily Streamflow  

Having obtained excellent encodings of rainfall events, the FM approach and its extensions are tested as a 

modeling method for streamflow records gathered daily over a year. As these mildly-intermittent sets visually 

share similar “complexity” as the rainfall events, the FM approaches turn out to yield also faithful 

descriptions. This is illustrated next for 64 years of daily records gathered at the Sacramento River (USGS 
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station 11447650 near Freeport) and for even smoother, decadal records for a total of 55 years, where a 

constant base flow is subtracted from the raw data and a water year (labeled by the end year) starts on October 

1st and ends on the following September 30th. Prior to encoding, such records are normalized so that the 

accumulated volume becomes unity, as required for the FM methodology, which is used as in Fig.1, with a 

constant smoothing of 5 days. 

 
Figure 4: Measured streamflow at the Sacramento River for water year 1965 (blue) and two FM representations 
(red), corresponding to wires based on two and three maps. 

Fig. 4 shows an example of two FM encodings (in red) of the streamflow set corresponding to the 

water year ending in 1965 (blue). While representation A corresponds to a wire generated via two maps, B 

emanates from a wire generated via three maps. As seen, the overall geometry of the streamflow set is well 

captured in both cases, as the corresponding accumulated sets are hard to distinguish from the actual set. Such 

is corroborated by the small values of the root mean square and maximum errors in accumulated sets (𝜖𝜖𝑎𝑎𝑎𝑎 

and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚) – below 2.1 and 4.0%, respectively – and the high Nash-Sutcliffe efficiency for the records, 𝜂𝜂𝑑𝑑, 

always above 66%, as reported in the figure. As may be expected, given its additional degrees of freedom (10 

parameters), the encodings for representations B results in reasonable fittings of the autocorrelation, 

histogram and entropy functions, as implied by high Nash-Sutcliffe efficiencies (𝜂𝜂𝑎𝑎 , 𝜂𝜂ℎ  and 𝜂𝜂𝑒𝑒) – equal to 95, 

95 and 96%, respectively, also as included in the figure.  
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After encoding all 64 streamflow years, from 1951 to 2014, Fig. 5 shows the implied performance for 

case B (a fractal wire based on the iteration of three maps), when FM encodings are upgraded by the yearly 

volumes and then the constant base flow is added. As seen, the overall FM representation of streamflow is 

excellent visually (in red) and also statistically, as the qualifiers 𝜖𝜖𝑎𝑎𝑎𝑎, 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚, and 𝜂𝜂𝑑𝑑 have means plus or minus 

standard deviations of 0.8 ± 0.3%, 1.8 ± 0.5% and 64 ± 19%, respectively.  

 
Figure 5: Observed (blue) and FM encoded (red) streamflow for 64 years in the Sacramento River, from water 
year 1951 till 2014. The FM method uses wires based on three maps. The vertical scale of the graph is in 100,000 
𝒇𝒇𝒕𝒕𝟑𝟑/𝒔𝒔𝒔𝒔𝒔𝒔. 

As climate change studies often rely on information averaged over a decade, Fig. 6 includes the FM 

analysis of a typical decadal streamflow set at the Sacramento River (blue) for two variants: a wire model 

based on two maps (A) and a wire representation that uses three maps (B) (both in red). Notice how the 

smooth decadal records are also well represented by the FM notions, as expected. The optimization exercise 

itself turns out to be easier this time than that for yearly sets (in part because parameters for the previous 

decade may be used as initial conditions for a future search) and such a fact gets reflected in a higher range of 

statistical qualifiers. As included in the figure, for the decade presented, the 𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 values are found to 

be 0.5 and 1.1% for FM representation A (relying on 6 parameters) and 0.3 and 0.8% for FM variant B 

(employing 10 parameters), which are rather small numbers, smaller than the typical ones reported in Fig. 4. 
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Figure 6: Measured streamflow at the Sacramento River for water decade 1966 (blue) and two FM 
representations (red), corresponding to wires based on two and three maps. 

 
Figure 7: Observed (blue) and FM encoded (red) streamflow for 55 decades in the Sacramento River, from water 
decade 1959 till 2014. The FM method uses wires based on three maps. The vertical scale of the graph is in 
100,000 𝒇𝒇𝒕𝒕𝟑𝟑/𝒔𝒔𝒔𝒔𝒔𝒔. 

As done before, the overall performance over the entire period of 55 streamflow decades is shown in 

Fig. 7, for the wire model based on three maps. Clearly, the agreement between data (blue) and FM sets (red) 

is again excellent, and such is reflected by small numbers for the attributes 𝜖𝜖𝑎𝑎𝑎𝑎, 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 (0.5 ± 0.1, 1.0 ± 0.3, 

respectively), and noteworthy values of 𝜂𝜂𝑑𝑑 (76 ± 12). As seen contrasting Figs. 5 and 7, the fits are better for the 

smoother sets. 
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As seen in Fig. 8, the FM representations in Figs. 5 and 7 (red) result in very close preservations of 

the Spring flows at the Sacramento River (blue), for the months of March, April and May (bottom to top).  

This fact is particularly useful as the FM encodings may be used to properly represent the main volumes in 

the river.  

 
Figure 8: Yearly (left) and decadal (right) evolution of spring flow in the Sacramento River, corresponding to 
Figures 5 and 7. FM sets are in red and observations in red. 

4.1.3 Daily River Water Temperature 

Having faithful FM representations of streamflow sets motivates encoding water temperature at the 

Sacramento River. Since the low temperature over the year happens around December and January, instead of 

the water year cycle, records from January to December are considered, taking out a minimum temperature 

and normalizing, as done for streamflow. Once the records are defined, the FM approach with a 7-day internal 

smoothing is used for 51 years spanning 1962 to 2012. 

 
Figure 9: Measured water temperature in the Sacramento River for the year 1968 (blue) and an FM 
representation (red), corresponding to a wire based on two maps. 
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Figure 10: Observed (blue) and FM encoded (red) water temperature records for 51 calendar years in the 
Sacramento River, from 1962 till 2012. The FM method uses wires based on two maps.  

A sample outcome of such an effort is shown in Fig. 9 for the year 1968, which includes close fittings 

of the accumulated temperature sets based on a wire, defined using two maps (red). As seen, this set has 

excellent 𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 values of 0.2 and 0.4% and close to one Nash-Sutcliffe values 𝜂𝜂𝑑𝑑, 𝜂𝜂𝑎𝑎, and 𝜂𝜂𝑒𝑒. Fig. 10 

presents the corresponding overall temperature records as encoded via the wire representation based on a total 

of 6 parameters. As seen, the FM representations (red) are truly excellent and such is reflected by rather high 

Nash-Sutcliffe efficiency for the records of 91 ± 4%. Compared to streamflow sets, temperature records are 

smoother and, at the end, easier to represent using the FM method. As illustrated, this is accomplished with 

less number of parameters. 

4.2 Highly Intermittent Records 

The deterministic FM method, in its Cantorian version coupled with a vertical threshold (Fig. 2), may also be 

used to encode daily rainfall records exhibiting noticeable intermittency. This is illustrated next using 20 

years of records gathered at Laikakota, Bolivia. 
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Figure 11: Measured rainfall at Laikakota, Bolivia from September 1965 to May 1966 (top-blue) and two FM 
representations (bottom-red), corresponding to Cantorian constructions based on three maps and a threshold. 

As an example, Fig. 11 in blue shows rainfall records for water year 1966 (lasting nine months from 

September 1st of the previous year) and the corresponding accumulated mass set (top), and two alternative FM 

encodings (and accumulated sets) in red, labeled A and B, found via Cantorian inputs and subsequent pruning 

via a threshold; see Maskey et al. (2015) for further details. These representations rely on the iteration of three 

maps and approximate the accumulated set closely as they have mean square and maximum errors in 𝜖𝜖𝑎𝑎𝑎𝑎 and 

𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 that are (as seen in the graph) less than 1.7 and 5%, respectively. Although the precise locations of 

major peaks on this complex data set are not perfectly captured, the FM encodings do preserve the volume of 

the most massive second peak, which may be seen in the corresponding steepest section of the accumulated 

profile. As seen, the FM sets not only share similar textures and overall distribution of rain throughout the 

season, but also closely capture the extremes in the set, as indicated by the shown horizontal dashed lines at 

90% of the mass, especially the one named B. The goodness of the encodings may also be corroborated by the 

rather high Nash-Sutcliffe efficiencies on the histogram and entropy of the data set: 𝜂𝜂ℎ and 𝜂𝜂𝑒𝑒 always above 

99 and 67%, and by the percent of zeros matched by the encodings  𝑧𝑧𝑚𝑚 above 72%, as reported in the graph. 
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b) 

 
Figure 12: a) Measured rainfall at Laikakota, Bolivia from 1964-1965 to 1983-1984 (top-blue) and a FM 
representation (bottom-red), corresponding to Cantorian constructions based on two maps and a threshold; and 
b) corresponding accumulated rainfall sets over the period (After Maskey et al., 2015). 

Figure 12 shows the results of applying the FM approach (red) on each of 20 years of data at the 

Laikakota site (blue, from 1963 to 1984), but using a representation that is best in maximum accumulated 

error 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚, while using only two maps and a threshold. Although the obtained approximation is not as faithful 

as the one based on three maps, the overall behavior over the years remains good, as optimized accumulated 

values, 𝜖𝜖𝑎𝑎𝑎𝑎, range from 1.3 to 2.2% and maximum accumulated errors, 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚, span 3.5 to 8.8%. Notice how 

the real set and the FM encoding share similar (although non-identical) characteristics which, by having the 

mass properly accommodated within each individual year, result in almost indistinguishable overall 
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accumulated rain over the 20 years, as seen in Fig. 12(b). It is quite remarkable that the FM approach, relying 

on only 9 parameters, may accomplish such a feat. 

4.3 Remarks  

The above results have clearly illustrated how the FM approach and its variants (depending on 6 to 15 

parameters) may be coupled with a heuristic optimization scheme, especially the GPSO, in order to 

approximate the specific geometry of a host of geophysical patterns. As seen, the more the intermittency on a 

set the harder it is to encode it, with daily water temperature patterns being the easiest followed by daily 

streamflow records and daily rainfall sets, which are the most difficult. Certainly, the more complex-looking a 

given target is, the higher the number of maps required in the iterations and, hence, the higher the number of 

parameters, leading to more involved searches, which are compounded if a threshold and penalties, involving 

an inherent discontinuity, are required. Although some calculations may be accomplished on a standard 

personal computer, calculations for alternative sets require running the optimization procedure from scratch, 

as distinct sets have variable geometries. 

As both rainfall and streamflow records are not measured perfectly (e.g., Lanza and Vuerich 2009, Hammel et 

al. 2006), the encodings shown, within 3% in accumulated records, represent sensible approximations of the 

natural phenomena. These results, providing geometries that match the overall shapes and textures present in 

the sets, clearly substantiate the notion that complex geophysical patterns may be wholly characterized in a 

deterministic way (Puente and Sivakumar 2007). As the information in the sets is now compressed into the 

FM parameters of subsequent sets, an assessment of such evolutions shall be presented later in Section 7. 

5. Simulation of Geophysical Records 

Having shown that the FM method may produce faithful encodings of geophysical records, this section shows 

that the deterministic parsimonious approach may also be used to obtain simulations having increased levels 
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of complexity, namely, rainfall events, daily streamflow sets, and daily rainfall sets. This is accomplished by 

replacing the objective function, so that instead of accumulated sets it now uses suitable statistical 

information, such as autocorrelations, histograms, entropies, and numbers of zero values.  

5.1 Mildly Intermittent Sets 

To illustrate the notions with mildly intermittent sets, one rainfall event in Iowa City and one year of daily 

streamflow records gathered at the Sacramento River, California are analyzed. In both cases, alternative 

plausible simulations are found by minimizing the root mean square errors for correlations 𝜖𝜖𝑐𝑐 and 

histograms 𝜖𝜖ℎ, employing two maps that generate either a wire or a leaf (as in Figs. 1 and 3). While the 

simulated streamflow records rely on a smoothing of the obtained FM set, the rainfall set does not require of a 

local average of the output derived projection. As a consequence, the numbers of FM parameters for the wire 

and leaf representations of rainfall are 5 and 7, while for streamflow they are 6 and 8. 

5.1.1 Rainfall Events 

Figure 13 displays a high-resolution storm event gathered in Iowa City in 1990 and lasting 11.4 hours 

(Georgakakos et al. 1994) together with the records’ autocorrelation function and histogram (top-blue), 

followed by two FM simulations that preserve either the histogram or the autocorrelation function of the 

records (bottom-red). As seen, while the original storm contains two prominent regions of activity, the 

simulations yield sensible sets having similar-looking geometries that spread the mass and peaks at different 

locations. 

As appreciated via the statistics in the graph, both representations (A from a wire fitting the histogram 

only and B via a leaf seeking the autocorrelation only) preserve very well both the autocorrelation and 

histogram. Nash-Sutcliffe values for the histogram 𝜂𝜂ℎ are rather close to 100% and the location of the 

extreme 90% values 𝜇𝜇90 match very well, as seen by the close horizontal and vertical dashed lines in the 
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graphs. Although Nash-Sutcliffe statistics for the autocorrelation for case A is not as high as in case B, 67% 

vs. 96% in 𝜂𝜂𝑎𝑎 ,  notice the close agreement on the decay of the function for case A not optimizing such an 

attribute, as indicated by the number of lags when zero and 1/e correlations are found, 𝜏𝜏0 and 𝜏𝜏𝑒𝑒−1 . 

 
Figure 13: A rainfall event in Iowa City (top) and two suitable FM simulations (bottom), based on a wire and a 
leaf representation using two maps each. While A is based on fitting the histogram, B optimizes the 
autocorrelation. 

5.1.2 Streamflow  

Fig. 14 shows a year of daily streamflow record gathered at the aforementioned station of the Sacramento 

River, in water year 2003, together with the record’s autocorrelation function and histogram (top-blue), 

followed by two FM simulations that, once again, preserve either the histogram or the autocorrelation 

function of the record (bottom-red). As seen, while the original record and the simulations do look alike 

geometrically, the latter spread the mass in different ways, hence yielding peaks at various locations. 

As done for the rainfall events just described, while simulation A uses a wire based on two maps in 

order to preserve the record’s histogram, the one labeled B emanates from a leaf based on two maps that seeks 

to fit the data’s autocorrelation function. Unlike what was done for rainfall, though, a smoothing parameter of 
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7 days is used to generate the simulated sets. As may be seen, the shown simulations preserve almost 

perfectly the statistic included in the objective function: while simulation A matches the histogram, 

simulation B very closely preserves the autocorrelation function. Such may be corroborated by the 

corresponding Nash-Sutcliffe statistics close to 100%, rather close values of 𝜇𝜇90 close to 90%, and perfect 

fittings on the decay of the autocorrelation function via the lags 𝜏𝜏0 and 𝜏𝜏𝑒𝑒−1. Although preserving one 

attribute does not imply close fittings of the other statistic, notice how the shown simulations do reasonably 

well on a statistic not included in the objective function, with 𝜂𝜂𝑎𝑎 and 𝜂𝜂ℎ values being substantially large at 

values of 76 and 83%. 

 
Figure 14: A streamflow set at the Sacramento River from October 2002 to September 2003 (top) and two 
suitable FM simulations (bottom), based on a wire and a leaf representation using two maps each. While A is 
based on fitting the histogram, B optimizes the autocorrelation. 

5.2 Highly Intermittent Records 

To illustrate that the FM approach may also be used to simulate highly intermittent sets, a year of daily 

rainfall gathered at Tinkham Creek, Washington State, USA is analyzed. As autocorrelations of rain decay 

towards zero rather quickly, alternative plausible simulations are found by minimizing the root mean square 

errors for entropy 𝜖𝜖𝑒𝑒 and histograms 𝜖𝜖ℎ, employing two maps that generate either a wire or a Cantorian 
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attractor, both coupled with a threshold (as in Figs. 1 and 2). As such, the numbers of FM parameters for the 

wire and Cantorian simulations that follow are just 6 and 8. 

Figure 15 displays rainfall record at Tinkham Creek for water year 2001 together with the record’s 

histogram, Renyi entropy, and autocorrelation function (top-blue), followed by two FM simulations that 

preserve either the entropy function or the histogram of the record (bottom-red).  

 
Figure 15: A rainfall set at Tinkham Creek, Washington from October 2000 to September 2001 (top) and two 
suitable FM simulations (bottom), based on a wire and a Cantorian representation using two maps each. While A 
is based on fitting the entropy, B optimizes the histogram. The two simulations also account for consecutive zeroes 
in the records. 

As seen, the original set and the two simulations share similar looking intermittent geometries that, as 

found for mildly intermittent sets, spread the mass throughout the year giving rise to distinct peaks. While 

simulation A uses a wire based on two maps and uses a threshold in order to preserve the record’s entropy, 

the one labeled B comes from a Cantorian attractor generated via two maps and a subsequent threshold that 

seeks to fit the histogram of the data. As seen, the simulations preserve almost perfectly the statistic included 

in the objective function: while simulation A matches the entropy (and also the histogram, but not optimized), 

simulation B very closely preserves the histogram (and does not do poorly on the entropy as implied by an 𝜂𝜂𝑒𝑒 
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value of 83%). This performance, no doubt reflected by the addition of penalties into the objective function so 

that the number of zeros on the records and FM simulation differ at most by 10%, explains the intuitively 

correct feeling on the simulations. For as seen on the graphs, the total number of zeros 𝑁𝑁𝑍𝑍, the maximum 

consecutive number of zeros 𝑀𝑀𝑎𝑎𝑐𝑐, and the extreme 𝜇𝜇90 values are all almost perfectly preserved, even if 

negative Nash-Sutcliffe values for properly decaying but statistically insignificant autocorrelations 𝜂𝜂𝑎𝑎 appear. 

5.3 Remarks  

The above results have shown that the FM approach (and its variants) may be coupled with a heuristic 

optimization scheme in order to simulate a host of geophysical patterns. This is achieved encoding suitable 

statistics of the records rather than the records themselves, such as autocorrelation, histogram, entropy, and 

others. The examples herein present just a couple of possibilities, but additional sets may also be obtained by 

having representations based on more than two maps, by selecting various FM parameter combinations in the 

vicinity of an optimum, and by combining two or more attributes on an alternative objective function. 

It has been our experience that finding suitable simulations may be achieved easily and a fraction of 

the time required for doing encodings. As the employed statistics are much less complex than the sets, the 

simulations may be found (for both mildly and highly intermittent cases) iterating just two maps, hence 

yielding parsimonious FM representations. As it was illustrated, the simulated sets do resemble geometrically 

the processes under study, including their overall texture and intrinsic complexity. As such, the FM 

simulations may be useful to analyze the redistribution of patterns throughout the event duration and to 

provide alternative scenarios from which to study the intrinsic variability of a phenomenon. Certainly, the FM 

patterns may be used to supplement other plausible simulations found via alternative (stochastic) methods. 
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6. Downscaling Geophysical Sets 

This section explains how the deterministic geometric FM approach may also be used to downscale 

geophysical sets, in particular streamflow and rainfall sets from coarse scales (e.g., weekly, monthly) to fine 

scales (e.g., daily). While various stochastic disaggregation techniques exist (e.g., Valencia and Schaake 

1973, Koutsoyiannis 1992, 1994, Olsson 1998), they require simplified assumptions that often prevent them 

from adequately accounting for nonlinearities present in the records. As such, the FM method may provide an 

alternative approach to complement such stochastic techniques. 

Given information at a coarse resolution, say accumulated every 𝜏𝜏 days, the FM method may be used 

to find daily values, as follows. First, accumulate the coarse records during the duration of the season in 

question, say a year, and then seek a suitable FM encoding of such accumulated records (as explained in 

Section 3). Second, given the FM parameters of such an approximation, compute the disaggregation as the 

output projection 𝑑𝑑𝑦𝑦 obtained at the daily resolution, just by re-computing the output histogram over the 

appropriate number of (increasing) bins. As the accumulated sets for fine and coarse records surely match 

every 𝜏𝜏 days, a close FM approximation at the coarse scale should result in a good representation at the daily 

scale, one that, by definition, should remain close to the overall accumulated mass. In the present study, these 

notions are tested for streamflow and rainfall sets using coarse scales for 𝜏𝜏 = 7, 14 and 30 days. 

6.1 Mildly Intermittent Records 

Figure 16 shows the streamflow records at the Sacramento River for water year 2005 (minus baseflow), 

evaluated (from available daily values) at the aforementioned levels of aggregation (blue) and the subsequent 

FM fits and disaggregations found via wires based on three maps and a local smoothing of 5 days (red).  

As seen on the left of the figure and as it may be expected given the previous results herein, all FM 

representations at the weekly, bi-weekly, and monthly resolutions produce rather faithful fits of sets and 
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accumulated masses, with relevant search errors 𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 that are always below a mere 0.7 and 3.9%, 

respectively, and with corresponding Nash-Sutcliffe values 𝜂𝜂𝑑𝑑 that are above a healthy 84%. As appreciated 

on the right hand side of the graph, the FM variants at distinct resolutions yield reasonably-looking 

disaggregated patterns at the daily scale, which not only closely follow the accumulated records but also 

preserve, even when using 30-day data, the overall texture and three main peaks of the original set. 

 
Figure 16: Sets and accumulated records associated with streamflow gathered at Sacramento River, during water 
year 2005.  Observations (blue), FM fits at coarse resolutions (red-left); and corresponding downscalings at a 
daily scale (red-right). The aggregation scales are 7, 14 and 30 days. Measurements are shown in blue and FM-
related information, via a wire based on three maps, are depicted in red. 

As expected, the best disaggregated pattern, both statistically and by the naked eye, corresponds to 

the 7-day case. This is so, as the accumulated records at such a resolution are the closest to reality of the ones 

considered. Although in terms of Nash-Sutcliffe values 𝜂𝜂𝑑𝑑 the downscaled data from 30 days are better than 

those from 15 days, notice that both representations are suitable indeed as they have rather small values in  

𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 that are less than 1.2 and 3.9%, respectively. As seen, all downscales are quite reasonable and 

they also happen to provide sensible approximations of relevant statistical information, such as 

autocorrelation and histogram. 
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6.2 Highly Intermittent Records 

Figure 17 depicts rainfall records at Laikakota Bolivia for water year 1966 evaluated (from available daily 

values) at 7, 14 and 30 days (blue) and the subsequent FM fits and rainfall disaggregations defined via wires 

based on three maps and a threshold (red).  

 
Figure 17: Sets and accumulated records associated with rainfall gathered at Laikakota, Bolivia, during water 
year 1966.  Observations (top), FM fits at coarse resolutions (bottom-left); and corresponding downscalings at a 
daily scale (bottom-right). The aggregation scales are 7, 14 and 30 days. Measurements are shown in blue and 
FM-related information, via a wire based on three maps and a threshold, are depicted in red. 

As observed on the left hand side of the figure and as it may be expected given the intrinsic 

complexity of rainfall sets, even though the accumulated records may be encoded with errors 𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 

that are always below 3.1 and 8.7%, respectively, the corresponding encodings do not show the same degree 

of faithfulness as just described for streamflow. These lead, however, to the downscales shown on the right 

hand side, that while corresponding to increased errors 𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚 below 4.3 and 11.3%, respectively, 

(about twice as much as what may be obtained while encoding a daily set, as in Fig. 11), do provide suitable 

shapes that may be useful in a practical setting. Certainly, the geometries of the implied downscales are 
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sensible and they may also be used as suitably close simulations of the records, that is, representations that 

follow closely the distribution of rainfall throughout the year. 

6.3 Remarks  

The above results have clearly shown that the FM approach may be used in order to downscale streamflow 

and rainfall sets to the daily scale, achieving reasonable results for scales that span up to 30 days. It has been 

illustrated that the downscaled sets resemble the texture and implicit complexity of the involved process, as 

they represent suitable geometries that pass closely to the accumulated daily records. The results have 

established that while runoff may be downscaled with noticeable precision, the disaggregation of more 

complex rainfall results in only some reasonable approximations that maintain the intermittency and overall 

distribution of rain during the year. 

The application herein shows that only 10 FM parameters may be adequate in disaggregating weekly, 

bi-weekly and monthly sets, with compression ratios that are as high as 37:1 for a given year. The present 

downscaling technique may supplement others based on stochastic methods and may clearly be used to 

disaggregate outputs from global circulation models (GCMs) in order to assess climate change impacts. 

7. Geometric Classification and Prediction of Geophysical Records 

This section is concerned with the possibility of predicting geophysical records based on the time evolution of 

successive FM parameters of such annual sets. Specifically, the analysis herein centers on the streamflow sets 

at the Sacramento River encoded before (Section 4.1.2), which shall be attempted to be forecasted based on 

FM-based classifications of patterns, both at the yearly and at the decadal scales. Due to space considerations 

and as streamflow is a relevant indicator of catchment dynamics and of potential climate change effects (e.g., 

Döll and Schmied 2012), the study centers on such an attribute. A similar approach, however, may also be 

carried out on other geophysical variables (e.g., rainfall, water temperature, etc.).  
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7.1 Evolution of FM Parameters for Streamflow 

As previously reported, 64 years and 55 decades of successive streamflow records at the Sacramento River 

have been faithfully encoded via the FM approach, i.e., Figs. 5 and 7. As all such representations emanate 

from FM wires based on the iteration of three simple maps, the corresponding FM parameters of such sets, 

together with the evolving volumes of years or decades, allow visualizing (in a compressed geometric 

fashion) the dynamics of streamflow at the two scales.  

 
Figure 18:  Time evolution of FM parameters for 64 years in the Sacramento River, corresponding to Figure 5. 
Gray horizontal lines represent mean trends over thirds of the time domain, with values shown above. 𝑸𝑸 is the 
total volume over a year in 100,000 cfs. 
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Figures 18 and 19 present the time evolution of FM parameters for yearly and decadal encodings, 

respectively, as follows. As all encodings use a local smoothing parameter of 5 days (as in Fig. 1), the two 

sets of graphs include a total of nine FM parameters, followed by the total volume 𝑄𝑄 of a year, namely: the 

coordinates of the second and third interpolating points (𝑥𝑥1, 𝑦𝑦1) and (𝑥𝑥2, 𝑦𝑦2) (having set, without a loss of 

generality, the first interpolating point to (0,0)), the vertical scaling parameters of the three maps, 𝑑𝑑1, 𝑑𝑑2 and 

𝑑𝑑3, and the weights that determine how the maps are iterated, 𝑝𝑝1, 𝑝𝑝2 and (1 – 𝑝𝑝1– 𝑝𝑝2)% of the time. As may 

be appreciated, the graphs also include local means (in gray) of each parameter over a third of the domain 

(shown on top of each parameter frame) in order to visualize possible trends in the parameters. 

 
Figure 19:  Time evolution of FM parameters for 55 decades in the Sacramento River, corresponding to Figure 7. 
Gray horizontal lines represent mean trends over thirds of the time domain, with values shown above. 𝑸𝑸 is the 
total volume over a decade in 100,000 cfs.  
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As seen comparing the graphs, it becomes obvious that there is much more variability at the yearly 

scale (Fig. 18) than at the decadal scale (Fig. 19), in a manner that resembles the different shapes already 

reported for the spring flows at those scales in Fig. 8. Clearly, yearly FM parameters (and total flow) vary 

wildly and swing from high to low values and vice-versa in a manner that precludes the possibility of safely 

extrapolating trends into the future. Although it is clear that these variable signals do play a key role in 

understanding the complexity of the evolving streamflow, the geometry of the observed patterns change in a 

non-trivial fashion from year to year and such leads to non-specific changes every 21 years (as shown in 

gray), which exhibit so much variability within that forecasts of individual parameters are not possible. 

The evolution of FM decadal parameters and total volume in Fig. 19, on the other hand, do exhibit the 

expected smoothing produced by the fact that successive decadal patterns, besides being smoother, do look 

alike. The decadal evolutions clearly exhibit a degree of smoothness and some well-established trends when 

seen every 18 years (as shown by the gray horizontal lines) and such suggests that extrapolations of some FM 

parameters may be made into the future. Even if the flow 𝑄𝑄 remains quite variable at the decadal scale, the 

smaller variation in FM parameters could be used to foresee the overall geometry of decades into the future, 

which in turn may be translated into a yearly (disaggregated) normalized geometric prediction when decades 

and years share relevant correlations. Regarding plausible geometric implications of the decadal streamflow 

patterns to global climate change, it is interesting to note that some of the parameters in Fig. 19 do exhibit 

increasing and/or decreasing trends that may perhaps be related to climatic indicators. 

Similar trends as those found in Figs. 18 and 19 are also found for other rivers within the United 

States (not reported here). While yearly FM parameter values, reflecting variable geometries, vary 

substantially from year to year, decadal FM parameters exhibit smoothness and some trends that allow 

extrapolating trends. It is anticipated that the information on such graphs may be used to study the inherent 

complexity of alternative locations (say by the strength of the swings in parameters) and to evaluate the 

presence of climatic effects at distinct regions. 
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7.2 Classification of Streamflow Sets via Clustering of FM Parameters 

As the evolutions of FM parameters at yearly and decadal scales show ample variations (especially at the 

yearly scale), it becomes natural to inquire if a classification of patterns into classes may be made in order to 

arrive at more stable descriptions. As such, Fig. 20 shows the streamflow centroids for ten classes obtained 

via an unsupervised classifier, the k-means clustering analysis based on the Euclidean distance of FM 

parameters (e.g., Arthur and Sergi 2007). The shown graphs, which once again reflect the wider spread of 

yearly records, summarize the records only up to 1999 (and not all the records), and such are computed in an 

attempt to study if sensible streamflow predictions for the decade ending in year 2000 and, subsequently, for 

the water year 2000 may be obtained.  

 
Figure 20: Yearly and decadal accumulated streamflow centroids based on a classification of FM parameters for 
data up to 1999 at the Sacramento River.  

Having defined ten classes on yearly and decadal streamflow at the Sacramento River, Fig. 21 now 

shows their evolution from 1951, that is, 49 years (blue) and 40 decades (red). As expected, the classes at the 

yearly scale still exhibit noticeable variability, but the decadal information steadily grows in the selected 

classes, in a manner that suggests a stable class prediction for the decade ending in year 2000. 
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Figure 21: Yearly (blue) and decadal (red) streamflow evolution by classes for the Sacramento River up to 1999, 
as defined in Figure 20. 

With this evolving information in hand, it is explained next how it may be possible to further 

synthesize the class evolutions in order to try to establish relations between past years and decades that may 

perhaps be useful in predicting as well. Following a Markovian framework, Fig. 22 summarizes the transition 

matrices that may be defined based on class information: from yearly to yearly, from decade to decade, and 

from decade to yearly sets. For instance, while the decade to decade shows simple diagonal patterns that 

suggest a reasonable predictability at such a scale, the yearly to yearly and decadal to yearly matrices exhibit 

broader distributions that nonetheless may trim away some states, say, once a prediction of the next decade is 

known. 

 
Figure 22: Transition matrices for streamflow dynamics at the Sacramento River up to 1999 corresponding to the 
classes in Figure 20. Graphs are read from right to left. 

7.3 Predictions of Streamflow via FM Parameters and Classes 

Given the synthesis of FM parameters into centroids of classes and the calculation of transition matrices up to 

a given year, various ideas may be used in order to define suitable predictions for the next water decade and 

then the next water year. As the FM parameters and classes for yearly streamflow records exhibit notorious 
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variability for the Sacramento River (i.e., Figs. 18 and 21), predicting the next year would have to rely on 

forecasts of the next decade and then transfers of such via transition matrices. Some variants for predicting 

streamflow at the decadal and then the yearly scales are given next. 

7.3.1 Decadal Predictions 

Given that the evolution of decadal FM parameters and classes exhibit smoothness, it becomes natural to 

employ a statistical time series representation (i.e., an ARMA model) on the individual parameters and to 

extrapolate the class of the last available decade to the following decade. 

 
Figure 23: Plausible predictions for water decade 2000 based on FM parameter evolution and FM classes. 

 In this spirit, Fig. 23 shows the water decade ending in year 2000 (blue) and three plausible 

predictions stemming from information gathered up to year 1999: (a) a decadal set given by the FM decadal 

parameters extrapolated via time series models to 2000 (red), (b) the set corresponding to the predicted class 

for year 2000 defined as the one having the largest transition probability emanating from the class of decade 

1999 (green), and (c) the set obtained by averaging the FM parameters used in defining the previous two sets 

(magenta). As may be seen, although the three “predictions” are less smooth than the records, their 

accumulated sets – depicting the timing of decadal streamflow over the year – yield rather reasonable patterns 

for the Sacramento River. In fact, the mean square and maximum errors in accumulated sets (𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚), 

are, in order, (3.4, 7.2), (1.3, 2.3), and (1.7, 4.0), in percent, whose small ranges are typically encountered 

while repeating the analysis for other years (decades). 
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7.3.2 Yearly Predictions 

As already mentioned, it is not possible to build meaningful time series models from the parameters in Fig. 

18. However, predictions may be defined by: (a) looking at the class evolutions at the yearly scale 

(considering the future class that maximizes the transition probability from the current state) and (b) 

considering predictions at the decadal scale and transforming such into the yearly scale using the decadal to 

yearly transition matrix, both as reported in Fig. 22.   

 
Figure 24: Plausible predictions for water year 2000 based on FM classes and transition matrices. 

To continue with the example, Fig. 24 illustrates the notions for water year 2000 (blue) and 

“successful” predictions based on: (a) year to year class predictions as just explained (red), (b) decadal to 

yearly extrapolation based on the centroid-decadal prediction for decade ending in 2000 (i.e., from the best 

decadal prediction in Fig. 23) (green), and (c) the set obtained by averaging the FM parameters used in 

defining the previous two sets (magenta). As may be seen, although the three “predictions” exhibit intrinsic 

variability and do not capture in detail the main peak on the yearly records, their accumulated sets –  

portraying the timing of streamflow over the year – yield indeed reasonable patterns for the Sacramento River 

in year 2000, especially the prediction obtained by transferring the faithful predictions at the decadal scale. 

The mean square and maximum errors in accumulated sets for these predictions (𝜖𝜖𝑎𝑎𝑎𝑎 and 𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚), are, in order, 

(5.5, 15.0), (2.0, 4.9), and (3.1, 8.8), in percent, which, although larger than the ones obtained for decadal 

information, hold promise that a geometric approach may produce holistic streamflow forecasts.  
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Even though the quality of the forecasts just presented do vary with the year considered (at the 

Sacramento River and elsewhere) and there are instances in which the notions provide unfaithful predictions 

(with maximum errors in accumulated sets greater than 30%, as reflected by the spread in Fig. 20), there is yet 

another idea that may be used to try to create alterative predictions. Following the same overall notions, the 

idea is not only to use a predicted centroid but also the years associated with such a class and then generate, in 

a combinatorial sense, various sets of FM parameters. These may be used to obtain a certain number of 

predicted “realizations” that may be analyzed to find average holistic forecasts augmented by their spreads. 

Results from this idea shall be reported elsewhere. 

7.4 Remarks 

The above results have illustrated how the FM ideas may be employed, in conjunction with further synthesis 

of available information, in order to define plausible future holistic scenarios of a geophysical data set at the 

yearly and decadal scales, and beyond. It has been shown that the FM parameters of successive streamflow 

sets allow us to: (a) visualize the evolution of patterns providing relevant hints about the geometric 

complexity of the process, (b) establish a geometric classification of sets based on clustering of FM 

parameters, (c) develop relations from past information into the future via transition matrices from year to 

year, decade to decade, and decade to year, and (d) propose a methodology for finding holistic forecasts of 

future years and decades. 

Although surmising accurate future scenarios remains a challenge and should be tried broadly before 

offering widespread generalizations, it is envisioned that the ideas herein may be useful to quantify the 

geometry of streamflow in different rivers in distinct geographical regions, leading to a better understanding 

of their implicit complexity. Certainly, the same notions may be tried on sets beyond streamflow and such 

may naturally include observations of rainfall, water and air temperature, evaporation, and others. In regards 

to the water temperature and rainfall records shown before (Figs. 10 and 12), it may be said that their FM 
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parameters exhibit ample variability (qualitatively as much as found in the yearly streamflow records), 

something that could be expected for the rainfall set but not so for the smoother temperature patterns. What 

these results stress (not shown due to space restrictions) is the fact that geometric variability from year to year 

is rather common in nature, which explains why it is not easy to describe and forecast geoscience phenomena. 

8. Conclusions and Future Research 

This chapter encapsulates the application of the deterministic fractal-multifractal FM approach to the 

encoding, simulation, disaggregation/downscaling, classification, and prediction of geoscience records. This 

work has illustrated that the FM method (and its variants), when coupled with a suitable optimization scheme, 

may be used to parsimoniously describe a host of patterns including rainfall events, daily rainfall sets over a 

year, daily streamflow sets over a year, and also daily water temperature records. Overall, mildly intermittent 

sets are easier to encode, as it takes, for a given set, from three to five hours of CPU on a personal computer. 

Highly intermittent rainfall sets are harder to process, as their optimization process takes, for a given set, 

about a day of CPU time. 

As hinted in Section 3, the FM parameter space corresponding to a wire or a leaf is highly complex, 

and even more so for Cantorian representations that also include thresholds. Although there is continuity 

between the FM parameters and the sets they induce (i.e. the FM graphs vary a little when a single FM 

parameter varies a little), multiple changes of parameters end up generating similarly looking attractors from 

various combinations of parameters and, hence, there is no unique optimal solution. Although the patterns 

shown throughout this chapter are close renderings of the target sets, the presence of alternative close 

solutions ought to be studied in detail. It certainly would be relevant to ascertain the dynamics of, say, the best 

ten solutions to a given process and to study such representations on a multi-dimensional sense trying to 

encounter further relationships that may help in producing improved forecasts. It is envisioned that data 

mining techniques and the general notion of principal components may be useful in such a research. 
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In regards to the plausibility of improving predictions, few ideas may be tried for further 

improvements. Such encompasses combining FM parameters at various resolutions beyond years and 

decades, using say “pentades” (aggregating the records every five years) and employing in the definition of 

the classes a metric that weighs the distinct parameters according to their intrinsic variability, and not equally 

as it has been reported herein. Certainly these notions, coupled with the usage of (ten) alternative “solutions,” 

may yield improvements that may help elucidate climate change effects and trends. 

Overall, there is much that needs to be done in order to fully study geoscience records using the FM 

approach. Besides trying the ideas in a variety of catchments, the following are relevant questions that 

represent future research. How do the FM parameters vary spatially when streamflow records of sub-

catchments (upstream) are compared to those of the catchment (downstream)? How are the FM parameters of 

rainfall observations related to those of streamflow at the same site? Do the FM parameters vary in a 

systematic way when performing downscales at various scales? How are the FM parameters of various 

attributes related on a given site? How are the FM parameters of, say, rainfall, streamflow, and evaporation 

related to climate indicators? Are trends in climate relatable to discernible changes on the various attributes 

such that a changing hydrology may be elucidated? How are the FM parameters of distinct processes related 

to the underlying physics (conservation laws) of the phenomena? Are there discernible physical explanations 

for each one of the FM parameters? 

Clearly, the scope of the FM approach is not limited to the study of geoscience records only, as, in a 

rather natural way, it may also be used to enhance other disciplines, such as physics, engineering, pattern 

recognition, general statistics, medical sciences, and finance. It is envisioned that applications of the FM 

approach, and also for patterns in higher dimensions (Puente 2004), will appear in such fields in the future. 

Keywords: Cantor attractor, deterministic encoding, disaggregation, downscaling, fractal-multifractal 

method, k-means clustering, multiplicative cascade, pattern classification, prediction, projection, rainfall, 

simulation, streamflow, transition matrices, water temperature. 
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Symbols and Notation 

𝜖𝜖𝑎𝑎𝑎𝑎:  root mean square error on accumulated records 

𝜖𝜖𝑚𝑚𝑎𝑎𝑚𝑚:  maximum error on accumulated records 

𝐸𝐸𝑞𝑞: entropy function of a data set 

𝜂𝜂𝑎𝑎: Nash-Sutcliffe efficiency on autocorrelation  

𝜂𝜂𝑑𝑑: Nash-Sutcliffe efficiency on data  

𝜂𝜂ℎ: Nash-Sutcliffe efficiency on histogram  

𝜂𝜂𝑒𝑒: Nash-Sutcliffe efficiency on entropy  

𝑍𝑍𝑚𝑚: percent of zeros matched  

𝜏𝜏0: lag when autocorrelation becomes zero 

𝜏𝜏1/𝑒𝑒: lag when autocorrelation becomes 1/𝑒𝑒 

𝜇𝜇90: mass of FM fitted histogram equivalent to 90% mass of observed histogram 

𝑀𝑀𝑎𝑎𝑐𝑐: maximum consecutive zero values  

𝑁𝑁𝑍𝑍: number of zero values  
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