
The deterministic Fractal-Multifractal approach may be used to produce sensible simulations and disaggregation for both 
precipitation and streamflow sets, which preserve entire statistical information of relevance in applications. The ideas 
rely on the solution of an appropriate inverse problem, in the space of FM parameters, which easily yields a variety of 

plausible solutions at a fraction of the time required for performing encodings of daily sets. By defining sets that are 
indistinguishable from observed records, the notions supplement procedures based on stochastic methods. It is 
envisioned that the FM method may also be used to downscale other sets, such as outputs of global circulation models. 
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Application of a deterministic geometric approach for the simulation and downscaling of hydrologic data, daily rainfall and daily streamflow over a year, is presented. Specifically, it is shown that adaptations of the fractal-multifractal (FM) method, 
relying on only 6 to 10 geometric parameters, may do both tasks accurately. The capability of the FM approach in producing plausible synthetic and disaggregated sets is illustrated using rain sets gathered in Laikakota, Bolivia and Tinkham, Washington, 
USA, and streamflow sets measured at the Sacramento River, USA. It is shown that suitable deterministic synthetic sets, maintaining the texture of the original records, may readily be found that faithfully preserve, for rainfall, the entire records’ 
histogram, entropy and distribution of zeros, and, for streamflow, the entire data’s autocorrelation, histogram and entropy. It is then shown that the FM method readily generates daily series of rainfall and streamflow over a year based on weekly, bi-
weekly and monthly accumulated information, which, while closely preserving the time evolution of the daily records, reasonably captures a variety of key statistical attributes. It is argued that the parsimonious FM deterministic simulations and 
downscaling may enhance and/or supplement stochastic simulation and disaggregation methods.  
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Introduction 

Concluding Remarks 

Simulation and disaggregation (downscaling) of hydrologic records are key for the planning and design of water resource 
infrastructures. Although a host of (stochastic) procedures do exist for such tasks, the very nature of using realizations, 
preserving only some statistical/physical features, suggests that improved approaches may perhaps be developed. 

Trying to capture the intricate details of geophysical records,  Puente (1996) developed a deterministic fractal geometric 
method, the fractal-multifractal (FM) approach, which approximates a data set as a fractal transformation of a multifractal 
measure. As previous efforts have demonstrated that such geometric notions are useful for encoding various hydrological 
processes, e.g., daily rainfall and streamflow sets gathered over a year (Maskey et al., 2015, 2016a), this work explores the 
possibility of using the FM approach to simulate and downscale rainfall and runoff, that is, highly intermittent rainfall sets 
gathered at Laikakota, Bolivia and Tinkham, Washington, USA and also mildly intermittent streamflow sets measured at 
the Sacramento River, USA. 
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FM Disaggregation of Precipitation  and Streamflow 
The ability of the FM approach as a downscaling method is demonstrated in Fig. 11 for rainfall and Fig. 12 for streamflow. 
The calculations involve finding suitable FM encodings of accumulated records at a coarse scale (weekly, bi-weekly and 
monthly) and using the obtained FM parameters to re-compute the output projection 𝑑𝑦 over a fine resolution (daily).  

The FM disaggregation, based on the iteration of three affine maps and hence 10 FM parameters, yields textures that are 
indistinguishable, by the naked eye, from those present in the observations. While rainfall downscales exhibit 
inaccuracies in entropy with Nash Sutcliffe indices as low as 45% in weekly to daily downscales, their histograms (and 
therefore the moments) remain well preserved, even from the monthly scale. As expected, the downscales for the mildly 
intermittent streamflow set are even better, for the Nash Sutcliffe indices for autocorrelation, histogram and entropy are, 
for all disaggregation scales, above 84, 90 and 99%, respectively (Puente et al., 2016). 

Deterministic Simulations of Rainfall  

The ability of the FM notions in simulating (highly intermittent) rainfall sets, containing substantial periods of inactivity 
(many zeros throughout the year), is illustrated for Laikakota, Bolivia in  Figs. 3 and 4 and for Tinkham, Washington, USA 
in Figs. 5 and 6. Such sets were found running an optimization program, over the set of FM parameters, aiming at the 
preservation of the data’s histogram, entropy and zero values (i.e., number of zeros and length of consecutive zeroes). 

For the Bolivia site, while Fig. 3 shows FM sets that capture the record’s histogram and distribution of zeros, Fig. 4 
includes FM simulations that preserve the entropy and zero values and the histogram and entropy combined.  

Figures 5 and 6 are the corresponding simulations for a water year at Tinkham, Washington.   

Deterministic Simulations of Streamflow 

The capability of the FM approach in simulating (mildly intermittent) streamflow sets is illustrated in Figs. 7 to 10 for two 
distinct years of records at the Sacramento River, 2002-03 and 2004-05. While Figs. 7 and 9 show simulations preserving the 
records’ autocorrelation and histogram for the two water years only, Figs. 8 and 10 include simulations aimed at fitting the 
autocorrelation and histogram combined and the autocorrelation, histogram and entropy combined.  
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Fig. 11. A rainfall set at Laikakota, Bolivia (Sept. 1965May 1966) (blue) and suitable FM downscales based on three affine maps (red), from 
weekly to daily, bi-weekly to daily and monthly to daily, followed by a comparison of statistics at the daily scale.  
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Fig. 7. A streamflow set at the Sacramento River (Oct. 2002Sept. 
2003) (blue) and two FM simulations (red) preserving: A the 
record’s autocorrelation, and B the record’s histogram. The green 
lines correspond to 90% masses. 

Fig. 8. A streamflow set at the Sacramento River (Oct. 2002Sept. 
2003) (blue) and two FM simulations (red) preserving: A the 
record’s autocorrelation and histogram (jointly), and B the 
record’s autocorrelation, histogram and  Rényi entropy (jointly). 
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All FM rainfall simulations, based on the iteration of two maps and requiring from 6 to 8 FM parameters, preserve key 
statistics in their entirety, including 90% extremes. Nash-Sutcliffe efficiencies for histograms and entropy are above, 
respectively, 99% and 81%, the number of FM zero values are above 92% of the zeros in the records, and the maximum 
length of consecutive zeros on FM sets differ from those in the sets by less than 4 days (Maskey et al., 2016b). 

Fig. 9. A streamflow set at the Sacramento River (Oct. 2004Sept. 
2005) (blue) and two FM simulations (red) preserving: A the 
record’s autocorrelation, and B the record’s histogram. The green 
lines correspond to 90% masses. 
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Fig. 10. A streamflow set at the Sacramento River (Oct. 2004Sept. 
2005) (blue) and two FM simulations (red) preserving: A the 
record’s autocorrelation and histogram (jointly), and B the 
record’s autocorrelation, histogram and  Rényi entropy (jointly). 
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All FM simulations, requiring 6 to 8 FM parameters, preserve whole functions of the record’s: autocorrelation, histogram and 
entropy, as used in the respective objective function. Nash-Sutcliffe indices on preserved statistics in Figs. 7 and 9 are always 
greater than 98%. The corresponding efficiencies in Figs. 8 and 10 are always above 87% (Maskey et al., 2016c).  

Fig. 4. A rainfall set at Laikakota, Bolivia (Sept. 1965May 1966) 
(blue) and two FM simulations (red) preserving: A the record’s 
Rényi entropy and distribution of zeros (jointly), and B the 
record’s histogram and entropy (jointly).  
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Fig. 3. A rainfall set at Laikakota, Bolivia (Sept. 1965May 1966) 
(blue) and two FM simulations (red) preserving: A the record’s 
histogram, and B the distribution of zeros (total number and 
consecutive). The green lines correspond to 90% masses. 
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Fig. 6. A rainfall set at Tinkham, Washington (Oct. 2000Sept. 
2001) (blue) and two FM simulations (red) preserving: A the 
record’s Rényi entropy and distribution of zeros (jointly) and B the 
record’s histogram and entropy (jointly).  

𝑅 𝑝 𝐻 𝜌 

𝑡 𝑏 𝑞 𝜏 

Data Histogram Entropy Autocorrelation                    

Fig. 5. A rainfall set at Tinkham, Washington (Oct. 2000Sept. 
2001) (blue) and two FM simulations (red) preserving: A the 
record’s histogram and B the distribution of zeros (total number 
and consecutive). The green lines correspond to 90% masses. 
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Fig. 12. A streamflow set at Sacramento River (Oct. 2004Sept. 2005) (blue) and suitable FM downscales based on three affine maps (red), 
from weekly to daily, bi-weekly to daily and monthly to daily, followed by a comparison of statistics at the daily scale.  
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Figure 1 shows how a fractal interpolating function 𝑓: 𝑥 → 𝑦 transforms a multifractal measure 𝑑𝑥 into a derived 
measure 𝑑𝑦 (Puente, 1996).  As seen, such a function 𝑓, constructed iterating two simple contractile affine maps of the 
form 𝑤𝑛(𝑥, 𝑦)  =  (𝑎𝑛𝑥 + 𝑒𝑛, 𝑐𝑛𝑥 + 𝑑𝑛𝑦 +  𝑓𝑛) (Barnsley, 1988), passes by the three points marked in blue and yields, 
while doing the calculations using a 47-53 proportion for the two maps, a classical multifractal measure 𝑑𝑥 (Mandelbrot, 
1989) and a deterministic projection 𝑑𝑦, whose smoothed version on the right, 𝑑𝑦𝑠 , resembles river discharges in time 
(Maskey et al., 2016a; Puente et al., 2016). At the end, 𝑑𝑦 is a set that is uniquely based on the interpolating points, the 
vertical scalings 𝑑𝑛 and the iteration’s proportion, a deterministic pattern that possess a physical interpretation as a non-

trivial cascade of a conservative constituent (Cortis et al., 2013). 

Figure 2 depicts a generalized version of the FM approach in which the interpolating points are replaced by end-points 
yielding, in the process, more general attractors. As illustrated, the iteration of two simple affine maps as above, with 
successive end-points marked by blue circumferences and according to 26-74 proportion, gives, in this case, a Cantorian 
measure 𝑑𝑥 and a sparse attractor from 𝑥 to 𝑦 that produces a highly intermittent derived measure 𝑑𝑦, which, when 
trimmed below a threshold 𝜙, as seen on the right, looks like rainfall records (Maskey et al., 2015).  

Fig. 1. The FM method:  from a multifractal 𝑑𝑥 to a projection 𝑑𝑦, 
via a fractal interpolating function 𝑓, followed by a smoothed 
output 𝑑𝑦𝑠 . 
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Fig. 2. A generalized FM approach: from a Cantorian measure 𝑑𝑥, 
to a projection 𝑑𝑦, via a disperse attractor from 𝑥 to 𝑦,  followed by 
an output 𝑑𝑦𝑣  found pruning 𝑑𝑦 below a threshold 𝜙. 
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