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Hydrologic data sets such as precipitation records typically feature complex geometries that are difficult
to represent as a whole using classical stochastic methods. In recent years, we have developed variants of
a deterministic procedure, the fractal–multifractal (FM) method, whose patterns share not only key sta-
tistical properties of natural records but also the fine details and textures present on individual data sets.
This work presents our latest efforts at encoding a celebrated rainfall data set from Boston and shows
how a modified particle swarm optimization (PSO) procedure yields compelling solutions to the inverse
problem for such a set. As our FM fits differ from the actual data set by less than 2% in maximum cumu-
lative deviations and yield compression ratios ranging from 76:1 to 228:1, our models can be considered,
for all practical purposes, faithful and parsimonious deterministic representations of the storm.

� 2013 Published by Elsevier B.V.
1. Introduction

Modeling of rainfall complexity has witnessed substantial pro-
gress in the past few decades, largely owing to the development
of sophisticated mathematical techniques, such as those based on
stochastic theories and fractal geometry. Although these ideas
have resulted in a new language for the description and simulation
of some of the data sets’ intricacies, oftentimes these notions are
still inadequate to study, on an individual basis, the incredible vari-
ety of natural rainfall patterns available to us.

Given that rainfall sets are typically erratic, noisy, intermittent,
complex, or in short, ‘‘seemingly random,’’ it has become natural to
model them using stochastic (fractal) theories (e.g., Rodríguez-
Iturbe, 1986; Lovejoy and Schertzer, 1990). This has inspired a vari-
ety of approaches that, while yielding realizations that preserve
relevant statistical (physical) attributes of the records (e.g., mo-
ments, autocorrelation, power spectrum, multifractal spectrum,
etc.), fail to capture specific details (e.g., positions of major peaks)
and relevant textures (e.g., periods of no activity) present in mea-
sured data sets.
These limitations, intrinsic to any stochastic approach, led us to
develop a fractal geometric methodology (e.g., Puente, 1996)
aimed at capturing the complexity of rainfall patterns, and not just
some key statistical features. By interpreting data sets as determin-
istic derived measures obtained transforming multifractals via
fractal interpolating functions (e.g., Barnsley, 1988), our ‘‘fractal–
multifractal’’ (FM) approach can indeed generate a vast class of
patterns, over one or more dimensions, that encompasses all the
distinctive characteristics of rainfall sets (e.g., Puente, 1996;
Obregón et al., 2002a, 2002b) and other complicated geophysical
patterns such as contaminant plumes in heterogeneous geological
formations (e.g., Puente, 2004). This richness in the possibility of
generating complex-looking deterministic sets with a relatively
small number of parameters results, however, in a very intricate
structure of the associated parameter space. Owing to this com-
plexity, the solution of the inverse problem for a give data set, that
is, searching for suitable FM parameters that produce a ‘‘match,’’
remained, to date, an elusive task.

In this article, we report on our latest efforts to solve this very
involved inverse problem. The proposed inversion strategy builds
upon a recent generalization of the classical particle swarm opti-
mization (PSO) search procedure (Fernández Martínez et al.,
2010) that, combined with a statistical sampling of the initial
conditions for the PSO, yields near-perfect parameter recovery
for synthetic data sets and excellent fits of natural historic rainfall
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Fig. 1. The FM approach: from a multifractal dx to a projection dy via a fractal
interpolating function, a wire from x to y.

206 H.-H. Huang et al. / Journal of Hydrology 496 (2013) 205–216
records, such as a detailed Boston storm used in earlier studies
(Rodríguez-Iturbe et al., 1989; Puente and Obregón, 1996; Obregón
et al., 2002b).

2. Materials and methods

In this section, we summarize the underlying mathematics of
our FM geometric construction, including some of the extensions
we have introduced, and outline the strategy for the solution of
the inverse problem.

2.1. The original FM approach

In its simplest and original form, a FM pattern is obtained as the
projection of the graph of a fractal interpolating function illumi-
nated by a multifractal measure, as follows.

Firstly, the graph G = {(x, f(x))|x e [0, 1]} of such a fractal func-
tion f:x ? y passing by N + 1 ordered points along x, {(xn, yn)|x0

< . . . < xN, n = 0, 1, . . .,N}, is defined as the unique deterministic
attractor of N simple affine maps: (Barnsley, 1988)
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where the vertical scaling parameters dn satisfy |dn| < 1, and the
other parameters an, cn, en, and fn are defined via the contracting ini-
tial conditions
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which map the end values of the data in x into internal sub-
intervals.

In a practical setting, the graph of a fractal function f, typically
shaped as a convoluted wire and having a fractal dimension
1 6 D < 2, is obtained by a pointwise sampling of the attractor via
iterations of the affine maps, a procedure also known as the chaos
game (Barnsley, 1988). The idea is to start the process at a point al-
ready in G, e.g., a given (xn, yn), and progressively iterate the N
maps wn according to, for example, the outcomes of independent
"coin" tosses.

Secondly, as the chaos game is performed for a sufficient
amount of time, not only is the set G found, but also a unique
invariant measure is induced over G, which reflects how the attrac-
tor is filled up. The existence of such a measure (akin to a histo-
gram) allows computing unique—and hence, fully deterministic—
projections over the coordinates x and y (denoted herein by dx
and dy) that turn out to display irregular shapes as found in a vari-
ety of geophysical applications and beyond (see, e.g., Puente,
2004).

In order to clarify the notions, Fig. 1 shows an example of a frac-
tal wire passing through the three points {(0, 0), (0.50, �0.35),
(1, �0.20)} as generated by 106 iterations of the two maps
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As may be readily verified, the two maps w1 and w2 satisfy the
contractile Eqs. (2) and (3), operate in x over the intervals [0, 0.50]
and [0.50, 1], respectively, and have vertical scaling parameters
d1 = �0.8 and d2 = �0.6.
In addition to the graph G, Fig. 1 also displays the projections
(histograms) dx and dy, induced while carrying the previously
mentioned chaos game according to a biased 30–70% proportion
on w1 and w2.

As the x-coordinate in the maps is not affected by values of y (as
implied by the zero entry in Eq. (1)), dx ends up being a simple
deterministic (binomial) multifractal that, as it is related to a
deterministic multiplicative cascade, exhibits noticeable repeti-
tion. In turn, dy happens to be the derived measure of dx via the
fractal wire f and is computed, for any given value of y, by adding
the corresponding ‘‘events’’ dx that satisfy f(x) = y. As can be seen,
the geometrical FM construction generates a ‘‘random-looking’’
set dy that resembles a rainfall time series (e.g., Puente, 2004;
Obregón et al., 2002b) and such is the basis for using such an ap-
proach, with suitable parameter values, to attempt to model
hydrologic (geophysical) information.

Besides its clear geometric appeal, it happens that the FM ap-
proach may also be given a physical interpretation (Cortis et al.,
submitted for publication). For instance, as certain multifractals
can be used to characterize energy distributions in turbulent atmo-
spheric flows, the outputs dy may be interpreted as ‘‘reflections’’
(passive tracers) of turbulence or as non-trivial (fractal) integra-
tions of rather spiky multifractals that reflect the phenomenology
of random cascades. As the derived measures, for suitable sets of
parameters, do share the spectrum of singularities of so-called
‘‘universal multifractals’’ (Tessier et al., 1993), they may also be
thought of as specific realizations of random cascades, which have
the advantage of being fully characterized, in their entirety, by a
small set of parameters.
2.2. An extension with overlaps

The geometric procedure illustrated in Section 2.1 may be gen-
eralized so that the attractor G is no longer a function from x to y,
but a ‘‘cloud’’ of points. This is accomplished by iterating N affine
maps, as in Eq. (1), but replacing the contractive initial conditions
by
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n = 0, 1, . . ., N � 1, while satisfying a new ordering condition for val-
ues in x, namely: x0 6 x2n < x2n+1 6 x2N�1.

As may be discerned, each one of the maps for this extension is
associated with a set of endpoints that assign some new arbitrary
subintervals in x, [x2n, x2n+1], which are related with corresponding
values in y, [y2n, y2n+1]. When these endpoints, from mapping to
mapping, match both in x and y, this setting gives back the previ-
ously defined fractal interpolating function. However, when x-
intervals overlap (e.g., when x2n�1 > x2n), or when the endpoints
in y do not match (when y2n-1 – y2n), a more sophisticated attrac-
tor, not shaped as a single-valued function, emerges.

An example of these ideas is shown in Fig. 2, which exhibits a
‘‘leafy’’ attractor obtained by iterating the two maps
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Here, w1 and w2 were used 36% and 64% of the time, and correspond
to the endpoints {(0, 0), (0.60, 5)} and {(0.30, 0), (1, 1)}, respectively,
which leads to an overlap in x as w1 operates from 0 to 0.60 and w2

does so from 0.30 to 1.
As shown in the figure, the unique projection over x is no longer

a spiky multifractal but rather a smoother measure. However, its
transformation via the rather structured fractal ‘‘leaf’’ yields yet
another projection set over y that has also the typical features of
a natural precipitation pattern and beyond.
Fig. 2. The FM approach with overlaps: from an input texture dx to a projection dy
via a ‘‘leafy’’ attractor.
2.3. A nonlinear extension

Another way to extend the original FM procedure is to add a
small nonlinear perturbation on each of the y-components of the
affine mappings (e.g. a damped cosine function) (Cortis et al.,
2009):
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while keeping the same contractive initial conditions as in Eqs. (6)
and (7).

An example of such an extension is seen in Fig. 3 for a setting of
four regions of endpoints {(0, 0), (0.11, 1.36)}, {(0.56, �2.21),
(0.75, �0.02)}, {(0.22, 2.02), (0.65, �2.59)}, and {(0.36, 4.49),
(1, 1)}, corresponding to the maps,
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which, when iterated according to the proportions 9–18–20–53%,
yield the attractor and related stable projections, over x and y, as
depicted.

As may be seen, the new attractor G corresponding to the iter-
ations of these (still simple) maps cannot be described either as a
wire or a leaf. It also contains gaps over x that emanate from the
propagation (via the four maps) of the unaccounted region in x
Fig. 3. The FM approach with nonlinear addition: from an input texture with holes
dx to a projection dy via a ‘‘broken’’ attractor.



Table 1
Breakdown of errors (‘2-norm of averaged cumulative function) over 100 runs for GPSO.

Set # Maps 61% 62% 65% 610% >10%

Boston 2 2 88 100 100 0
3 41 97 100 100 0
4 49 99 100 100 0

Synth 2 4 43 100 100 0
3 2 95 100 100 0
4 12 96 100 100 0

Table 2
Breakdown of errors (‘2-norm of averaged cumulative function) over 100 runs for the classical PSO.

Set # Maps 61% 62% 65% 610% >10%

Boston 2 0 0 33 72 28
3 0 0 66 97 3
4 0 0 64 93 7

Synth 2 0 0 23 70 30
3 0 0 0 52 48
4 0 0 0 43 57

Table 3
Average improvement of the error over 100 runs.

Set # Maps Classical PSO (%) GPSO (%)

Boston 2 20 52
3 30 64
4 38 71

Synth 2 21 53
3 33 69
4 35 75

208 H.-H. Huang et al. / Journal of Hydrology 496 (2013) 205–216
from 0.11 to 0.22 as discerned from the endpoints above. Notice
however how such an attractor still yields an interesting projection
pattern over y (and also over x) that displays, once again, typical
features of natural precipitation and other geophysical sets, hence
defining a suitable extension for the description of complex data
sets.
2.4. An extension from higher dimensions

The examples thus far have yielded attractors over two dimen-
sions, but the geometric procedure can also be extended so that the
attractor G is embedded in higher dimensional space.
Table 4
Results of searching for a fit of the Boston storm made of 256 data points. Error 1, ‘2-norm o
percentage of data points that fall outside the ± 10% lines. Starred results denote entries u

Procedure # Maps # Parameters

FM-Wire 3 9
3 9
4 13
4� 13

FM-Leaf 3 13
3 13
4 17
4� 17

FM-Nonlinear 2 11
3� 19
4 25
4 25

FM-Marginal 2 16
2 16
3� 27
3 27
Introducing a z-coordinate into the first generalization of the
wire (that is, the overlapping extension) results in a map in the
form of
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which, coupled with three-dimensional analogs of Eqs. (6) and (7),
yields marginal projections over y and z that still resemble patterns
of precipitation.

An increase in the dimensionality of the construction results in
an increase in the number of parameters that specify the new af-
fine mappings, as the previous vertical scaling parameters now be-
come matrices (shown here in polar coordinates), but such does
not alter the deterministic nature of the associated derived mea-
sures. Illustrations of such derived projections will be given in Sec-
tion 3 when we will consider their application to the encoding of a
measured rainfall dataset.
2.5. Solving the inverse problem

While the generation of FM patterns is computationally
straightforward, the corresponding inverse problem, i.e., finding
f averaged cumulative deviation; Error 2, maximum cumulative deviation, and Error 3,
sed later to define Table 5.

Error 1 (%) Error 2 (%) Error 3 (%)

0.73 2.14 14
0.77 2.04 8
0.58 2.55 11
0.68 1.75 12

0.51 2.18 10
0.57 1.66 10
0.47 1.35 13
0.43 1.54 7

0.59 1.51 12
0.52 1.35 9
0.51 1.35 12
0.55 1.40 11

0.64 1.54 12
0.66 1.82 11
0.50 1.40 9
0.56 1.65 17



Fig. 4. Boston renderings using the original FM approach. Left column: the fit, in black, imposed on the original data, in gray. Middle column: the cumulative functions of the
data and the fit, with errors colored as area between the curves. Right column: scattergram of the data (horizontal) vs. the fit (vertical). Diagonal lines indicate ±10% lines.
From top to bottom, the representations were constructed using three, three, four, and four maps. Readers interested in reconstructing the plots may navigate to the website,
where all parameters may be found: http://puente.lawr.ucdavis.edu/omake/jhydro2012.html.
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the FM mappings and the associated iterating frequencies that clo-
sely approximate a given dataset, presents distinct challenges that
are associated with: (i) the high dimensionality of the search space,
(ii) the ambiguity in the choice of the objective function to be min-
imized, (iii) the complexity of the corresponding objective function
landscape, and (iv) the choice of the minimization algorithm, its
parameters and search strategy.

Over the years, we have used a number of alternative optimiza-
tion techniques coupled with various objective functions to at-
tempt a solution of the FM inverse problem, including
multidimensional simplex approaches, genetic algorithms, differ-
ential evolution, and various implementations of the particle
swarm optimization (e.g., Obregón et al., 2002a; Puente and
Sivakumar, 2007). At the same time, we have tested various objec-
tive functions, among others, fitting ‘2- and ‘1-norms (that is, the
square root of sums of squares and the sum of absolute values,
respectively) of one or more of the attributes of the records, such
as the records themselves, their moments, autocorrelations and
power spectra, multifractal spectra, cumulative function, Fourier
and Stieltjes transforms, and the record’s envelope. We also con-
sidered the Wasserstein metric, also known as the earth mover’s
distance (Hitchcock, 1941), to test whether non-local effects in
the objective function may lead to improved solutions.

During our efforts we have learned that the fitness landscapes, on
the space of parameters, are indeed fairly complex, even when there
are only a handful of parameters. It is therefore easy to get trapped in
local minima, irrespective of the optimization technique and the
objective function employed. This observation holds true even when
using synthetic sets as reality and while starting a search from initial
solutions that are relatively close to the original generating param-
eters. Also, as may be expected, the initial values used on a given
search happen to greatly influence the quality of the final results.

Building on our extensive numerical experience, we recently ar-
rived to the definition of an inversion strategy that is proposed in
this paper, which consists in considering a large set of randomly
selected initial conditions to drive a generalized particle swarm
optimization (GPSO) technique.

PSO algorithms are a class of heuristic optimization algorithms
that are inspired by the collective social behavior of animals (Ken-
nedy and Eberhart, 1995), and have been extensively used to com-
plex optimization processes. A perceived limitation of the PSO
method is its internal parameters calibration, which has until re-
cently considered a matter of heuristic case-by case experimenta-
tion. In order to overcome this difficulty in the application of the
PSO algorithm, Fernández Martínez et al. (2010) proposed to inter-
pret the workings of the PSO process as a discretization of a sto-
chastic damped mass-spring system. To test the proposed
strategy, we chose to work with the centered-regressive discretiza-
tion of the GPSO algorithm of Fernández Martínez et al. (2010). The
GPSO algorithm can summarize by the following simple steps:

http://www.puente.lawr.ucdavis.edu/omake/jhydro2012.html


Fig. 5. Boston renderings using the overlapping extension. The column setup is as in Fig. 4. From top to bottom, the representations were constructed using three, three, four,
and four maps.
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(1) Define an m -dimensional space M of admissible model
parameters: each of the parameters is bounded by lower
and upper limits. A model in this parameter space is called
a particle. m -dimensional vectors for position P and a veloc-
ity V in the search space characterize each particle. The nota-
tions Pk

j and Vk
j represent, respectively, position and velocity

of particle j at time k.
(2) Define an n-dimensional particle swarm of potential models

with positions P0
j ;1 6 j 6 n, randomly distributed in the

space M of admissible parameters, and assign an initial zero
velocity V0

j to each of the n particles. Calculate the misfit

EðP0
j Þ to the data for each of the swarm particles, and calcu-

late local best for each particle Lk
j ¼minPi

j
EðPi

jÞ for 1 6 j 6 n

and 0 6 i 6 k, and global best Gk ¼minLk
j
EðLk

j Þ.
(3) Modify the position and velocity of each particle in the

swarm according to a centered-regressive time discretiza-

tion, Vkþdt
j ¼ xdtVk

j þ /1dtðGk � Pk
j Þ þ /2dtðLk

j � Pk
j Þ, and

Pkþ1
j ¼ Vkþ1

j þ Pk
j , where /1 ¼ r1aG;/2 ¼ r2aL, r1, r2 e U(0,1)

are uniformly distributed random variables, aG are the global
and local accelerations, and x represents the inertia of the
system, and dt is the time step.
A detailed treatment of the stability regions for this algorithm
(and other related discretizations) can be found in (2010). In this
work, we apply the ‘‘cloud’’ version of the GPSO algorithm, where
all members of the swarm, in addition to the ‘‘leader,’’ as originally
proposed, have dynamic capabilities.

In this work, the swarm population consists of 300 particles,
where each particle represents the set of generating parameters
for a given FM projection (normalized in the range [0, 1]). Each par-
ticle of the PSO swarm is assigned its own inertia and global and
local accelerations, chosen close to the limit of second-order stabil-
ity of each PSO member to obtain a working compromise between
the need to converge towards a minimum and the need to explore
new portions of the search space. The swarm is then allowed to
evolve for a total of 40 iterations.

Reported next are the results obtained by minimizing the ‘2 -
norm of averaged cumulative deviations,

err ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N0

XN0

n¼1

ðcn � ĉnÞ2
vuut ð16Þ

where N0 is the number of data points (256 in this case) and cn and
ĉn are the nth accumulated values of the original records and the
generated fit, respectively. Such an objective function was deter-
mined to provide visually reasonable and accurate sets while being



Fig. 6. Boston renderings using the nonlinear extension. The column setup is as in Fig. 4. From top to bottom, the representations were constructed using two, three, four, and
four maps.
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computationally efficient. In order to ensure that solutions shared
geometrically similar features with the target set, we also imposed
penalties on the objective function, such as demanding that the
maximum cumulative deviations (pointwise) would not exceed
anywhere a value of 10%.

2.6. Numerical tests of the inversion strategy

In order to assess the feasibility and efficacy of our inversion
strategy, we tested our original FM procedure (using two, three,
and four maps) on a number of synthetically generated and mea-
sured ‘‘real’’ data sets. What follows is a summary of these numer-
ical experiments for two sets made of 256 data points: (a) one
representative synthetic data set, labeled as ‘‘Synth,’’ and obtained
via the FM approach using two maps, and (b) the previously men-
tioned storm in Boston, labeled as ‘‘Boston,’’ found aggregating
from the original records so that the observations happen every
2 min.

Table 1 includes the ‘2-norm of averaged cumulative deviations
(Eq. (16)) for the generalized particle swarm optimization (GPSO)
runs considering 100 uniformly selected random initial conditions
for the parameters. As can be seen in the table, all 100 runs yield
errors consistently smaller than 5%, and the vast majority of them
are smaller than 2% for the synthetic series (three and four maps)
and for the Boston storm (two, three, and four maps). Curiously,
only four of the runs using two maps for the synthetic set (i.e.,
the case used in the definition of such a set) provide misfits smaller
than 1% error, compared to the two and twelve runs for three and
four maps, respectively. Furthermore, and as it can be seen, there
were more successful runs at the 1% level for the Boston storm
(especially for three and four maps) than for the synthetic set, an
indication of the complexity of the landscape being searched.

Close examination of the results of the synthetic case reveals
that the four best results listed on the table are indeed extremely
close to the original parameters, virtually recovering the set per-
fectly. For the two and twelve best results in the three- and four-
map runs (i.e., less than 1%), on the other hand, the parameters
do exhibit more variation but they closely reproduce the synthetic
set, despite belonging to rather distinct regions in parameter space,
hence suggesting that there may not be a unique solution for a gi-
ven set. These results for the synthetic set represent a significant
step forward with respect to our past attempts at recovering the
generating parameters of such sets or even at getting sufficiently
close approximations of the patterns themselves. The plot compar-
isons between the used synthetic data set and its best fits are not
reported here as the corresponding graphs are indeed virtually
indistinguishable.

For the sake of comparison, Table 2 contains the same tests dis-
cussed in Table 1, but for the classical particle swarm optimization
(PSO) algorithm, which exhibit a clear degraded performance. The



Fig. 7. Boston renderings using the higher-dimensional extension. The column setup is as in Fig. 4. From top to bottom, the representations were constructed using two, two,
three, and three maps.
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dramatic change in the quality of the fits can therefore only be
attributed to the choice of the GPSO algorithm and not to the intro-
duction of the ensemble of random initial conditions common to
both approaches. Not only does the classical PSO algorithm fail to
produce any solutions with errors less than 2% for the two sets
in question, but it often leads to many cases with errors greater
than 10%, regardless of the number of maps used, and even more
so for the synthetic set.

As a note on computational times, on a modern quad-core
(four CPUs, each clocking in at �3.4 GHz) desktop computer, a
single 40-iteration run of the GPSO on the original ‘‘wire’’ proce-
dure takes 30–36 s to complete, compared to the 6–9 min of the
classical PSO. However, the latter is in reality considerably
slower as there is much less improvement within the iterations
when following just the leader of a swarm, as illustrated in
Table 3.

3. Fitting the Boston storm with FM models

In this section, we apply the inversion strategy presented in
Section 2.6 to find the parameters that best encode the Boston
storm, not only for the original FM approach (FM-Wire) but also
for the three FM extensions described in Sections 2.2-2.4, named,
in order, FM-Leaf, FM-Nonlinear, and FM-Marginal.
Before showing specific results based on the alternative proce-
dures, Table 4 lists general pertinent information for four render-
ings corresponding to each of the four FM models. Included in
the table are the number of (affine) maps used in a given fitting
and the corresponding number of parameters that holistically de-
scribe an approximation of the Boston storm, followed by relevant
statistical information: Error 1 is the same as in Eq. (16), that is, the
‘2 -norm of the averaged cumulative deviations, Error 2 represents
the maximum cumulative deviation (not explicitly optimized in
the procedure, though included as a 10% penalty as detailed in Sec-
tion 2.5), and Error 3 is the percentage of points that lie outside the
±10% band of a scatter plot of real vs. fitted values.

As may be readily seen, a host of excellent fits for the Boston
storm were obtained by the FM approaches as attested by the
rather small errors in the reported attributes, and for representa-
tions that require from 9 to 27 parameters. While the ‘2 -norm of
averaged cumulative deviations are consistently lower than
0.80%, it is also noteworthy to observe that the maximum cumula-
tive deviation seldom exceeds a mere 2% and that the percent of
fitted values outside the scatter plot’s ±10% bands is typically be-
low 15%. It is also important to note, to be seen graphically later,
that the deviations between the FM model and the data carry little
information regarding a systematic bias as they are randomly dis-
tributed with zero mean. As shall be shown next for all FM



Fig. 8. Best renderings of the Boston storm from each of the four previous figures. The left two columns are the same as before, but the column on the right now depicts the
autocorrelation functions with zero correlation line labeled.
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approaches, all models for this storm result in renderings that, for
all practical purposes, represent the observed storm.

3.1. Wire model

Fig. 4 contains the four best results obtained via the original FM
approach (see Section 2.1), using representations that utilize three
and four maps. The left column depicts the fit, in black, overlaying
the original data, in gray. For presentation purposes, the data val-
ues have been scaled such that the highest peak in the data is given
a value of 1. This plot of rainfall as a function of time (R vs. t) is fol-
lowed by the cumulative of the original data, together with devia-
tions in the fits as marked by small ‘‘lumps’’ along the profile (CR
vs. t). Lastly, the right-most column shows the scatter plot of the
data (horizontal) versus the fit (vertical), including the 10%-over
and 10%-under bands. Readers interested in reconstructing the
plots may navigate to the website http://puente.lawr.ucda-
vis.edu/omake/jhydro2012.html, where all parameters pertaining
to this and subsequent figures may be found.

Consistent with the first block in Table 4, FM-Wire, the top two
rows of plots correspond to a wire using three maps, and the bot-
tom two rows correspond to a wire defined by using four maps.
While none of the fits are totally perfect, notice how the bottom
two exhibit less ‘‘lumps’’ (in cumulative function) than the top
two, and how the last one gives an extremely close approximation
of the primary peak’s location and magnitude, as seen on the data
set itself as well as on the top-right point on the scatter plot, which
do not show bias (in all cases) in terms of over- and underestimat-
ing the original storm. All in all, the fits obtained via FM wires are
excellent and represent suitable complex patterns that are nigh-
indistinguishable from one another and the Boston storm.

3.2. Overlapping mapping model

Fig. 5 shows the best results obtained using the extension
where the simple maps are allowed to overlap, as described in Sec-
tion 2.2. As just described regarding Fig. 4 and as seen in the block
FM-Leaf on Table 4, the top two rows also correspond to attractors
obtained using three maps, and the bottom two correspond to
leaves defined using four maps. As may be seen, these renderings
produce yet other close approximations of the Boston storm that
preserve various geometric features. For instance, while the top
two events are fairly flat in the post-peak region of the storm,
the bottom two result in more activity and hence produce better
fits overall, especially with respect to Error 1 (see Table 4).

Notice how the bottom three representations gave rise to a dou-
ble peak—present in the original data—at the correct timing, unlike
what was seen in Fig. 4, which only contained a single fitted peak
(though properly timed). Observe that, as previously found for the
original FM approach, the scatter plots do not exhibit any hints of
bias towards over- or underestimating, as there are roughly equal
number of points above and below the shown 10% thresholds.

http://www.puente.lawr.ucdavis.edu/omake/jhydro2012.html
http://www.puente.lawr.ucdavis.edu/omake/jhydro2012.html


Fig. 9. Best renderings, rescaled to original resolution of 2048 points. Cumulative functions, autocorrelation functions, and power spectra (plotted in log–log) for the four best
renderings in black, imposed upon that of the original Boston storm in gray From top to bottom: the original data, the original FM method, the overlapping extension, the
nonlinear extension, and the higher-dimensional extension.
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3.3. Nonlinear mapping model

Fig. 6 shows the counterpart obtained when the overlapping
maps now contain a nonlinear cosine perturbation on the y-com-
ponent, FM-Nonlinear as explained in Section 2.3, and using two,
three, four, and four maps respectively as seen in the correspond-
ing block in Table 4. Once again, these fits are impressive, even if
not perfect, and they turn out to be comparable in quality (and
not necessarily any better as one would perhaps expect) to those
obtained without the additional cosine terms (see Table 4). These
fits, however, exhibit additional subtle features, such as better fits
in the post-peak region of the storm, as well as an accurate timing
on the ‘‘dip’’ during the storm’s early stages, particularly for the
bottom two representations.
3.4. Higher dimensional mapping model

Finally, Fig. 7 includes the results obtained when generating a
higher-dimensional wire (see Section 2.4) and taking the histo-
gram of one of its marginal distributions (here, over y). Consistent
with the FM-Marginal block on Table 4, the top two and bottom
two cases of Fig. 7 were made with two and three maps, respec-
tively. As it is the case for the three FM models considered above,
no noticeable bias can be discerned from the scatter plots, and
increasing the number of maps does not necessarily translate into
better statistical fits. Notwithstanding the introduction of addi-
tional parameters, this model provides consistent renderings for
the Boston storm. Also note how the solution represented by the
last row of Fig. 7, recovers a clean double peak that closely matches



Table 5
Comparisons of the best results (starred in Table 4) at the original resolution for the Boston storm. Errors 1 and 2 are the same as in Table 4. The other attributes are defined in the
text.

Procedure # Maps # Parameters Error 1 (%) Error 2 (%) Lag (1/e) Lag (0) Fractal dimension Entropy dimension Power spectrum slope

[original data] – – – – 48 268 1.44 0.958 �1.34
FM-Wire 4 13 0.68 1.83 50 263 1.48 0.958 �1.06
FM-Leaf 4 17 0.43 1.69 54 259 1.70 0.952 �1.13
FM-Nonlinear 3 19 0.53 1.38 47 261 1.57 0.950 �1.06
FM-Marginal 3 27 0.56 1.46 60 270 1.69 0.957 �1.33
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the main peaks of the storm, despite the fact that there are several
low values that fall outside the 10% bands on the scatter plot, an
unwelcomed feature relative to other ‘‘solutions’’ of the inverse
problem.

3.5. A comparison of the best and scaling back to the original
resolution

In order to gain a better global view of the different FM ap-
proaches, Fig. 8 compares the best ‘‘visual’’ results obtained via
the alternative FM representations, which are also marked with
asterisks in Table 4. As may be seen, such also correspond to cases
that are the best overall in terms of one or more of the fitting er-
rors, i.e., Error 1 to Error 3.

As may be discerned, the last column of Fig. 8 no longer includes
the scatter plots for the fits but rather displays the autocorrelation
functions (q vs. s) of the data (gray) and the fits (black). As may be
observed for all these renderings, the autocorrelation function and
the lag associated with the first crossing of zero correlation are
very close to that of the original, even though such information
was not programmed into in the objective function.

As surmised from Table 4, the fits on Fig. 8 come from represen-
tations requiring four, four, three, and three maps, respectively. Gi-
ven the associated parameter counts of 13, 19, 19, and 27, these
faithful encodings demonstrate compression levels of 9.5:1 to
19.7:1, which grow as the resolution of the data set increases.

To illustrate what happens when the resolution of the data is in-
creased, Fig. 9 depicts the cumulative records, autocorrelation, and
power spectrum (S vs. x) (in log–log scale) of the best results as in
Fig. 8 scaled back to 2048 data points (that is, every 15 s in the original
Boston storm and constructing a histogram with 2048 bins instead of
256 while inputting the same parameters into the respective FM pro-
cedures). Here it becomes particularly noticeable the closeness of the
cumulative plots that do not exhibit any more lumps than they did be-
fore, indicating that performing the parameter search at a lower reso-
lution (in this case a factor of 8) does not negatively impact the final
result when rescaling back. That this is the case may be seen in the col-
umns of Table 5 corresponding to Errors 1 and 2, for which values re-
main just as small at the 15-s resolution.

As may be appreciated from Fig. 8, and as one may hint given the
closeness of the cumulative renderings, the autocorrelation func-
tions and the power spectra of the FM fits lie on top of the ‘‘real’’ ones.
This fact is also reflected in the remaining columns of Table 5, which
include the lags corresponding to correlations 1/e and 0, the fractal
dimension of the data and fits, the entropy dimension D1 (a measure
of the roughness and multifractality of a set, cf. Puente and Obregón,
1999), and the slope b of the power spectrum in log–log scale, as
plotted. All these attributes closely mirror that of the original data,
indicating indeed that the overall textures of the records are being
preserved by any of those representations.
4. Summary and conclusions

We have illustrated how the FM approaches summarized here-
in, coupled with an effective optimization procedure for the
inverse problem, can be used as an efficient tool for hydrological
(geophysical) data encoding. As anticipated (e.g., Puente, 1996;
Puente and Sivakumar, 2007), this geometric procedure provides
a viable alternative to existing stochastic procedures that hints at
the possibility of hidden determinism in natural complexity. It is
proposed that the FM encoding procedures described in this work
may be used to understand rainfall dynamics in a reduced geomet-
ric space, thus opening the way to novel geometric (and perhaps
physical) descriptions of precipitation (Cortis et al., submitted for
publication).

As the FM patterns only require a few parameters—ranging
from 9 for a wire with three maps to 27 for the marginal extension
with three maps—our 256-value representations result in com-
pression ratios as high as 28:1. However, since equally faithful
solutions exist for the same data sets of higher resolution (as dis-
cussed in Section 3.5), compression ratios can easily exceed
100:1 (more precisely, 157.5:1 for a projection with 2048 bins
made of a wire defined with four maps). We want to emphasize
here that, while the number of the FM parameters is generally lar-
ger than the typical number of parameters used in stochastic mod-
els, this does not represent a model over parameterization, as the
stochastic models do not have enough ‘‘knobs’’ to adequately cap-
ture the finest details of typical precipitation datasets.

These highly promising results, and others for different sites
that will be reported elsewhere, represent a definite step forward
with respect to previous attempts (e.g., Puente and Obregón,
1996; Obregón et al., 2002a, 2002b) and substantiate the idea that
complex rainfall patterns may be wholly characterized in a deter-
ministic fashion.

Given the recent reports of precipitation measurements being
plagued with nontrivial errors (Lanza and Vuerich, 2009), it may
also be argued that all representations herein, with maximum
deviation from cumulative deviations (at the original resolution)
of no more than 2%, are acceptable renderings of what may happen
in nature, for all major peaks and trends in all sets considered are
sufficiently preserved.
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