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Abstract

Universal constructions of univariate and bivariate Gaussian distributions, as transformations
of diffuse probability distributions via, respectively, plane- and space-filling fractal interpolating
functions and the central limit theorems that they imply, are reviewed. It is illustrated that the
construction of the bivariate Gaussian distribution yields exotic kaleidoscopic decompositions of
the bell in terms of exquisite geometric structures which include non-trivial crystalline patterns
having arbitrary n-fold symmetry, for any n > 2. It is shown that these results also hold when
fractal interpolating functions are replaced by a more general class of attractors that are not
functions.
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1. INTRODUCTION

Recently, new universal constructions of the uni-
variate and bivariate Gaussian distributions have
been introduced.1,2 Such representations rely on the
usage of fractal interpolating functions3 and mea-
sures supported by their graphs, in order to arrive at
normal distributions as plane- or space-filling trans-
formations of general diffuse measures.

The purpose of the present article is twofold.
First, to provide a concise mathematical frame-

work to the aforementioned formulations, including

a suitable generalization of the ideas that results in

Gaussian distributions from a class of more general

attractors that are not functions. Second, to further

illustrate the existence of a wide variety of exotic

kaleidoscopic patterns that decompose the bivariate

Gaussian distribution via the original formulation4

and the subsequent extension of the ideas.

The organization of this paper is as follows.

Section 2 reviews the required mathematical
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constructions that allow defining fractal interpolat-
ing functions and more general attractors over two
or three dimensions and presents the implied Gaus-
sian results obtained via these constructions over
one and two dimensions. Section 3 illustrates the
validity of the Gaussian results and presents, via
examples, a host of the crystalline symmetric pat-
terns that remarkably decompose bivariate Gaus-
sian distributions. Finally, the article ends with its
summary and with some final remarks.

2. MATHEMATICAL
CONSTRUCTIONS AND
PRACTICAL IMPLEMENTATION

The main mathematical results needed to establish
the presence of sets of patterns that decompose the
bivariate Gaussian distribution, for fractal interpo-
lating functions and more general attractors, are
given next. For completeness of presentation, the
constructions start with fractal interpolating func-
tions defined over two dimensions and yielding a
univariate Gaussian distribution in the plane-filling
case.

Theorem 2.1. Fractal Interpolating Functions in

Two Dimensions (after Barnsley).3 Consider a

set of N + 1 non-aligned data points in the plane

{(xn, yn);x0 < . . . < xN , n = 0, 1, . . . , N} and N
affine mappings having the special form:

wn
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en

fn

)

, n = 1, . . . , N (2.1)

with 0 ≤ |dn| < 1, and satisfying the conditions:
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(

xn
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, n = 1, . . . , N . (2.2)

Then, G, the unique fixed-point of the affine

mappings, i.e. G = w1(G) ∪ . . . ∪ wN (G), is the

graph of a continuous function f : [x0, xN ] → R
that passes by the data points (i.e. f(xi) = yi,
for i = 0, 1, . . . , N), and has fractal dimension

D ∈ [1, 2) which is either the unique solution of
∑

|dn|a
D−1
n = 1 when

∑

|dn| > 1, or 1 otherwise.

A function f so defined is termed a fractal interpo-

lating function.

Remarks

(i) The proof of the existence and continuity
of fractal interpolating functions is given in
References 3 and 5.

(ii) Equations (2.1) and (2.2) result in N sets of
four linear equations, from which the param-
eters an, cn, en and fn are computed in terms
of the data points and the vertical scalings dn.

(iii) The fractal dimension D tends to 2 when the
magnitudes of all dn’s tend to 1. This implies,
by considering every sign combination on the
vertical scalings, the existence of 2N routes to-
ward obtaining plane-filling fractal interpolat-
ing functions.

Theorem 2.2. From a Diffuse Measure to the Uni-

variate Gaussian Distribution via Plane-Filling

Fractal Interpolating Functions (after Puente

et al.)1 Consider a sequence of fractal interpo-

lating functions fi such that all of them interpo-

late the same set of non-aligned points in the plane

{(xn, yn); x0 < . . . < xN , n = 0, 1, . . . , N} and

such that the graph Gi of such functions has frac-

tal dimension Di which tends to 2 as i tends to

∞. Let X be a diffuse probability measure over

I = [x0, xN ], i.e. one that has a continuous cumu-

lative distribution function and define the derived

measures Yi(X) = X ◦ f−1
i and their standardized

measures Y S
i (X), subtracting the mean and divid-

ing by the standard deviation. Then, for any of the

2N choices of sign combinations on the affine map-

pings scalings dn’s, limi→∞ Y S
i (X) = N (0, 1) in

distribution, where N (0, 1) is the standard Gaus-

sian distribution with mean zero and variance one.

Remarks

(i) The proof is accomplished via two steps.1

First, the result is proven for a uniform
parent measure X = U over I by show-
ing (by induction) that the moments of
the standardized variables Y S

i (U) tend to
those of the standard normal distribution,

i.e. for all m, limi→∞ E[Y S
i (X)

2m+1
] = 0 and

limi→∞ E[Y S
i (X)

2m
] = 1 · 3 · . . . · (2m − 1),

where E is the expectation operator. Second,
the theorem is extended to an arbitrary dif-
fuse measure over I by demonstrating that the
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self-affinity of the limiting plane-filling func-
tion leads to Gaussian distributions within all
successive N -ary restrictions of I as defined by
iterations of the N affine mappings, distribu-
tions which when weighed by the correspond-
ing parent measures on those subintervals give
still a limiting Gaussian distribution.

(ii) Complete calculations for a single setup of sign
combinations and for N = 3 are presented in
Ref. 1.

(iii) The result is universal as the same limiting
plane-filling function transforms a vast family
of parent measures (with or without density
functions) into the Gaussian.

(iv) As binomial multifractal measures and other
singular measures encountered in the study of
turbulence6 may be used as natural parents1

and as the bell is associated physically with
the (slow) process of diffusion, the limit-
ing plane-filling functions, by completely fil-
tering the intermittency in turbulence into
the harmonious bell, yield an unexpected
relationship that transforms “violence” into
“calmness.” This intriguing result, although
formally implied by Theorem 2.2, does not pro-
vide a concurrent physical interpretation, for
calmness follows violence in nature.

(v) For the general case of a diffuse parent mea-
sure, it should be clarified that it is not a
weighed sum of Gaussian random variables the
one that turns out to be also Gaussian, but
rather it is the sum of weighed Gaussian dis-
tributions the one that gives another Gaussian
distribution.1

(vi) The construction implies a central limit theo-
rem considering the following telescopic choice
of random variables: Y T

i (X) = Yi(X) −
Yi−1(X), Y T

0 (X) = X. But the result is
not a trivial consequence of existing central
limit theorems because the Y T

i (X)’s, even
though weakly dependent, are not identically
distributed nor bounded (i.e. their variances
tend to infinity).1

These two theorems are extended naturally to frac-
tal interpolating functions over three dimensions as
follows.

Theorem 2.3. Fractal Interpolating Functions in

Three Dimensions (after Barnsley).5 Consider

a set of N + 1 non-aligned data points

{(xn, yn, zn); x0 < . . . < xN , n = 0, 1, . . . , N}

and N affine mappings having the special form:
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such that
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has L2-norm less than 1 (‖An‖2 =
√

λmax(AT
nAn)

< 1) and subject to the conditions
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, n = 1, . . . , N . (2.5)

Then, G, the unique fixed-point of the affine

mappings, i.e. G = w1(G) ∪ . . . ∪ wN (G), is the

graph of a continuous function f : [x0, xN ] → R2

that passes by the data points (i.e. f(xi) = (yi, zi),
for i = 0, 1, . . . , N), and has fractal dimension

D ∈ [1, 3) which depends on the coefficients an and

the submatrix An. A function f so defined is termed

a fractal interpolating function in three dimensions.

Remarks

(i) The proof of this theorem is completely analo-
gous to the two-dimensional case and is given
in Ref. 5.

(ii) Equations (2.3) and (2.5) result in N sets of
six linear equations, from which the param-
eters an, cn, kn, en, fn and gn may be com-
puted in terms of the data points and the
scaling matrices An.

(iii) Increasingly space-filling fractal interpolating
functions may be obtained as ‖An‖2 → 1 for

all n, which leads to the conditions |r
(j)
n | → 1,

j = 1, 2; θ
(1)
n → θ

(2)
n + kπ, for any integer k.2
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This yields 4N possible paths towards space-
filling functions when considering all possible

sign combinations on the parameters r
(j)
n .

Conjecture 2.1. From a Diffuse Measure to

the Bivariate Gaussian Distribution via Space-

Filling Fractal Interpolating Functions (after

Puente and Klebanoff).2 Consider a sequence

of three-dimensional fractal interpolating functions

fi such that all of them interpolate the same

set of non-aligned points in three dimensions

{(xn, yn, zn); x0 < . . . < xN , n = 0, 1, . . . , N}
and such that the graph Gi of such functions has

fractal dimension Di which tends to 3 as i tends

to ∞. Let X be a diffuse probability measure

over I = [x0, xN ] and define the derived bivari-

ate measures (Yi(X), Zi(X)) = X ◦ f−1
i and their

standardized bivariate measures (Y S
i (X), ZS

i (X)),
subtracting their corresponding means and dividing

by their standard deviations. Then, for any of the

4N choices of sign combinations on the affine map-

pings parameters r
(j)
n ’s, limi→∞(Y S

i (X), ZS
i (X)) =

N (0, 1, ρ), where N (0, 1, ρ) is a zero mean, vari-

ance one, bivariate Gaussian distribution, whose co-

efficient of correlation ρ depends on the data points,

the choice of sign combinations on the r
(j)
n ’s and the

parent diffuse measure X.

Remarks

(i) A general proof of the result following the steps
of the one-dimensional case is not available at
this time. This is because the joint moments of
(Yi(U), Zi(U)) for a uniform measure U over
I result in rather complicated formulas that
preclude an elegant proof by induction.2

(ii) Available recursive formulas for the joint mo-
ments under the uniform case, obtained using
the Maple V program, have allowed checking
the validity of the result for joint order mo-
ments of orders up to 12.

(iii) For the uniform case when N = 2, four fami-

lies of four sign combinations each on the r
(j)
n ’s

have been identified2 that give different behav-
ior in relation to the coefficient of correlation ρ.

For the case when θ
(1)
n = θ

(2)
n = θn, correlation

zero happens almost everywhere in the plane
θ1 − θ2. The four families give nonzero corre-
lation at: (a) grid points multiples of π where
ρ may jump to either 1 or −1, (b) horizontal
lines where θ2 is a multiple of π leading to con-

tinuously varying ρ’s between −1 and 1 whose
actual value depends on the data points, (c)
vertical lines where θ1 is a multiple of π and
with a similar behavior to the previous case,
and (d) inclined lines θ1 = θ2 +kπ where, once
again, correlations vary continuously between
−1 and 1 as a function of the data points.

(iv) Interesting cases have been identified2 that al-
low explaining the coefficient of correlation of
the bivariate Gaussian distribution in terms of
the geometric similitude of the x− y and x− z
projections of suitable space-filling fractal in-
terpolating functions which are derived from a
uniform distribution in x.

(v) As shall be illustrated later on, this conjecture
has been verified computationally for a family
of multinomial multifractal measures naturally
induced in x.1

These results for fractal interpolating functions may
be extended to encompass more general attractors
as explained herein.

Theorem 2.4. General Attractors in Three

Dimensions. Consider a set of N affine mappings

having the special form:
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corresponding to left-right non-aligned end-data

points {(xl(n), yl(n), zl(n))}, {(xr(n), yr(n), zr(n)},
i.e.
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with xl(1) = min xl(n), xr(N) = max xr(n),
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n = 1, . . . , N, and such that

An =
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)
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has L2-norm less than 1. Then there is an attractor,
G, the unique fixed-point of the affine mappings,

i.e. G = w1(G) ∪ . . . ∪ wN (G), whose fractal di-

mension D ∈ [0, 3) depends on the coefficients an

and the submatrix An.

Remarks

(i) The proof of this theorem relies on the fact
that all mappings involved are contractile.

(ii) Fractal interpolating points are obtained when
the end-points yield a suitable set of interpo-
lating points, i.e. xr(n) = xl(n + 1), yr(n) =
yl(n + 1), zr(n) = zl(n + 1), n = 1, . . . , N − 1
and when the coordinates in x are ordered.

(iii) When the placement of end-points in x
leaves holes within the domain interval
[xl(1), xr(N)], the resulting attractor is de-
fined over a Cantor set. In those cases, the
maximal attractor’s dimension is the dimen-
sion of the Cantor set multiplied by three.

(iv) When the placement of end-points in x results
in overlaps on the domains of affine mappings,
the obtained fractal attractor is no longer a
function. For these cases, the maximal attrac-
tor’s dimension is three.

(v) As found for fractal interpolating functions,
Eqs. (2.6) and (2.7) result in N sets of six linear
equations, from which the parameters an, cn,
kn, en, fn and gn may be computed in terms
of the end-data points and the scaling matrices
An.

(vi) As before, attractors that increasingly fill-up
space may be obtained as ‖An‖2 → 1 for all

n, which leads to the conditions |r
(j)
n | → 1,

j = 1, 2; θ
(1)
n → θ

(2)
n + kπ, for any integer k.

This yields, as before, 4N possible paths to-
wards maximal dimensions when considering
all possible sign combinations on the param-

eters r
(j)
n .

Conjecture 2.2. From General Attractors of

Maximal Dimension to the Bivariate Gaus-

sian Distribution. Consider a sequence of three-

dimensional attractors Gi such that all are

defined via suitable affine mappings given by

the same set of non-aligned left-right end-

points in three dimensions {(xl(n), yl(n), zl(n))},
{(xr(n), yr(n), zr(n)}, xl(1) = min xl(n), xr(N) =
max xr(n), n = 1, . . . , N, as in the previous

theorem, and having increasing fractal dimensions

Di that tend to their maximal value (either three

or such a value times the dimension of Cantor set

over x) as i tends to ∞. Let M be a diffuse prob-

ability measure over Gi and define bivariate mea-

sures (Yi, Zi) as projections of M over the coor-

dinates y and z and their standardized bivariate

measures (Y S
i , ZS

i ), subtracting their corresponding

means and dividing by their standard deviations.

Then, for any of the 4N choices of sign combi-

nations on the affine mappings parameters r
(j)
n ’s,

limi→∞(Y S
i , ZS

i ) = N (0, 1, ρ), where N (0, 1, ρ) is

a zero mean, variance one, bivariate Gaussian dis-

tribution, whose coefficient of correlation ρ depends

on the end-data points, the choice of sign combina-

tions on the r
(j)
n ’s and the measure M .

Remarks

(i) This conjecture has been verified only compu-
tationally for a family of natural measures as
generated over the attractor via the following
implementation.

Theorem 2.5. An Ergodic Theorem for Com-

putational Implementation (after Elton).7 Let

G be the unique attractor associated with a set

of contractile affine mappings wn corresponding

to left-right end-points {(xl(n), yl(n), zl(n))},
{(xr(n), yr(n), zr(n)}, xl(1) = min xl(n), xr(N) =
max xr(n), n = 1, . . . , N . Consider {(x̄m, ȳm,

z̄m)} a sequence of iterations as given by the cor-

responding mappings wn, such that the maps are

chosen independently according to a set of probabil-

ities p1, . . . , pN , starting at an arbitrary end-data

point, say (xl(1), yl(1), zl(1)), i.e.

(x̄m, ȳm, z̄m) = wσm
◦ wσm−1

◦ · · · ◦ wσ1
(xl(1), yl(1), zl(1))

m = 1, 2, . . . .

(2.9)

Then, there is a unique invariant measure M̃ in-

duced by the sequence of iterations over the attrac-

tor G that defines unique projections over the x and

y − z coordinates that are respectively X(M̃ ) and
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(Y (M̃), Z(M̃)). Moreover, values gathered along

an iteration path may be used with probability one,
i.e. except for all code sequences σ1, σ2 . . . having

probability zero, to calculate

lim
m→∞

1

m + 1

m
∑

k=0

g(x̄k, ȳk, z̄k) =

∫

R3

g(~x)dM̃ (~x)

(2.10)
for all continuous functions g : R3 → R.

Remarks

(i) In case G defines a fractal interpolating func-
tion, the induced measures are as follows:
in x, X(M̃ ) gives a multinomial multifractal
measure over [xl(1), xr(N)] with redistribution
parameters pn; in y − z, (Y (M̃), Z(M̃)) =
X(M̃ ) ◦ f−1 are defined as derived distribu-
tions. The existence of a unique measure M̃
over the graph of a fractal interpolating func-
tion is proven in Ref. 5.

(ii) In cases where the chosen end-points leave
open some subintervals of [xl(1), xr(N)], G be-
comes the product of the graph of a fractal
interpolating function and a Cantor set.1 For
such cases, the measure X(M̃ ) is a multinomial
multifractal over a Cantorian domain, with re-
distribution parameters pn and scales as de-
fined by the locations of the end-points in x.
For this case, (Y (M̃), Z(M̃)) = X(M̃ ) ◦ f−1

are also defined as derived distributions.

(iii) The theorem allows finding approximations of
the measures X(M̃ ) and (Y (M̃), Z(M̃)) and
their moments just by following a long branch
of iterations. Examples obtained based on this
implementation are given in the next section.

3. BIVARIATE GAUSSIAN
DISTRIBUTIONS AND
DECOMPOSITIONS

The examples that follow attempt to show that
the aforementioned conjectures hold both for fractal
interpolating functions and for the more general
attractors. In the majority of graphs that follow,
routine ran18 was used to define the corresponding
single branch of affine mapping iterations, but an
example obtained via the binary digits of π is also
included.

Example 3.1. From a Binomial Multifractal to

a Bivariate Gaussian via a Fractal Interpolat-

ing Function. Consider the generic set of interpo-
lating points {(0, 0, 0), (1/2, 1, 1), (1, 0, 0)}, and

r
(1)
1 = −r

(1)
2 = r

(2)
1 = −r

(2)
2 = 0.9995, θ1 = θ2 =

π/5, and a path of iterations that extends for 15 mil-
lion nodes starting at the mid-point and going left
70% and right 30% of the time, computed using the
routine ran1 with seed −123. Figure 1 shows the re-
sulting projections in x−y and x−z of the graph of

Fig. 1 A bivariate Gaussian distribution from a fractal interpolating function and a binomial multifractal measure. Range

on bivariate measure: −94, 96.
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the fractal interpolating function and a close ap-
proximation to a bivariate Gaussian distribution
with no correlation, as indicated by the marginal
densities dy and dz and the circular contours on the
joint measure dyz, based on a binomial multifractal
measure dx.

Remarks

(i) The shown projections of the fractal interpolat-
ing function are only approximate renderings of
the true objects. They were found averaging all
points (of the 15 million) that fall on each of 512
equally sized subintervals in x. For aesthetic
purposes, these averaged graphs were stretched
vertically on the plot so that they occupy all
the available space.

(ii) Other sign combinations on the scaling pa-
rameters and arbitrary angles θ1 and θ2 also
lead to similar graphs, possibly with nonzero
correlation.

Example 3.2. A Circular Bell via a Gen-

eral Attractor. Consider the set of left-right
end-points {(0, 0, 0), (0.7, 2, 1)}, {(1/2, 1, 1),

(1, 0, 0)}, r
(1)
1 = −r

(1)
2 = r

(2)
1 = −r

(2)
2 = 0.9995,

θ1 = θ2 = π/5, and a path of iterations that ex-
tends for 15 million nodes starting at (1/2, 1, 1)
and using the two affine mappings 70 and 30%
of the time, via the routine ran1 with seed −123.
Figure 2 shows the analogous of Fig. 1, found pro-

jecting the unique measure on the general attractor
over the three coordinates. As may be seen, a close
approximation to a bivariate Gaussian distribution
is also found.

Remarks

(i) The obtained measure in x, dx, is no longer a
simple binomial multifractal as the end-points
that define the contractions on the affine map-
pings overlap.

(ii) The shown projections of the attractor over xy
and xz are smoothed renderings of attractor
which indeed is not a function. As in the pre-
vious example, they were found averaging all
points (of the 15 million) that fall on each of
512 equally sized subintervals in x. For aes-
thetic purposes, these graphs were stretched
vertically on the plot so that they occupy all
the available space.

(iii) As found with fractal interpolating functions,
other sign combinations on the scaling pa-
rameters and arbitrary angles θ1 and θ2 also
lead to similar graphs, possibly with nonzero
correlation.

Example 3.3. Sequential Patterns Inside the Bell

from Fractal Interpolating Functions. Consider
the generic set of interpolating points {(0, 0, 0),

(1/2, 1, 1), (1, 0, 0)}, r
(1)
1 = −r

(1)
2 = r

(2)
1 = −r

(2)
2 =

0.9999, θ1 = θ2 = π/5, and the same seed of −123

Fig. 2 A bivariate Gaussian distribution from a general attractor. Range on bivariate measure: −146, 147.
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Fig. 3 Sequential patterns inside the circular bell from a fractal interpolating function. Range on squares: −104, 104.

for ran1 as used in the previous examples. But in-
stead of 15 million iterations, study the behavior of
the first 40, 000 dots over the y − z plane using w1

70% and w2 30% of the time. Figure 3 shows the
corresponding 20 frames of 2000 dots each, colored
according to the used affine mapping, from left to
right and from bottom to top. As seen, behavior is
not just circular but rather leads to exotic patterns
with ten-fold symmetry, i.e. 2π over π/5.

Remarks

(i) Continuing the generation every 2000 dots
gives additional pages whose crystal-like
kaleidoscopic behavior does not repeat in any

trivial manner. These patterns provide an
unexpected decomposition of the circular bi-
variate Gaussian distribution.

(ii) Usage of other seeds to drive routine ran1 or
use of the digits of irrational numbers, e.g. π
(modulus 2), gives yet, as shall be shown
later, other exotic patterns that decompose
the circular bell.4 This also happens when
points in x are taken not equally spaced.

(iii) By varying the angles θ1 and θ2, a great vari-
ety of decompositions having arbitrary sym-
metries may be generated. For integer-valued
angles in degrees, the actual number of tips
on the figures are basically nt = 2π/θ, where
θ is the maximum common divisor between θ1
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and θ2. But, depending on the sign combina-
tion of the scaling parameters the tips may
be twice or half nt.

(iv) There are cases, for nt large and for suit-
able sign combinations on the scalings, when
circular disks and rings “dance in and out”
making up a circular bell. This behavior is
not common to all possible scenarios as there
are sign combinations within the same overall
setup which lead to crystal-like patterns.

(v) Not all patterns inside the bell are found to
have the same degree of geometrical defini-
tion and symmetry. The actual “fuzziness”
decreases as the magnitude of the scaling pa-
rameters tends towards 1, but it also depends,

in a nontrivial manner, on: (i) the actual path
of iterations, (ii) the angles used, and (iii) the
sign combinations of the scalings.

(vi) The sign combinations cases on the scaling
parameters that generate Gaussians with ar-
bitrary correlations, as mentioned earlier,2

serve to define exotic decompositions of el-
liptical bells. Typically, these are not just
“elliptical” renditions similar to those shown
in Fig. 3, but rather such sets are made of
stretched broken patterns aligned with the
major axes of the limiting ellipse.

(vii) Yet other decompositions are found having
more than three interpolating points and
choosing the path of iterations such that

Fig. 4 Sequential patterns inside the circular bell from a general attractor. Range on squares: −173, 173.
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arbitrary multinomial multifractals (with
arbitrary length scales) are generated over
the domain of the unique fractal interpolating
function in x.

(viii) Some interesting patterns illustrating some of
these remarks are presented later on.

Example 3.4. Sequential Patterns Inside the

Bell from General Attractors. Consider the pre-
viously chosen end-points {(0, 0, 0), (0.7, 2, 1)},

{(1/2, 1, 1), (1, 0, 0)}, r
(1)
1 = −r

(1)
2 = r

(2)
1 =

−r
(2)
2 = 0.9999, θ1 = θ2 = π/5, and the same seed

of −123 for ran1 as used in the previous examples.
But instead of 15 million iterations, study the be-
havior of the first 40, 000 dots over the y − z plane
using w1 70% and w2 30% of the time. Figure 4
shows the analogous of Fig. 3 corresponding to 20
frames of 2000 dots each, colored according to the
used affine mapping, from left to right and from
bottom to top. As seen, behavior for the general

attractor also leads to exotic patterns with ten-fold
symmetry, i.e. 2π over π/5.

Remarks

(i) Qualitatively, all remarks made about kaleido-
scopic patterns generated by fractal interpolat-
ing also hold for the more general attractors
(Cantorian or otherwise). As may be hinted,
the nature of the decompositions depends on the
angles θ1 and θ2, the specific sign combinations

on the scaling parameters r
(j)
n , and the actual

placings of the affine mappings’ end-points.

As the decompositions inside the bell are rather
beautiful, some examples based on fractal interpo-
lating functions are given next. For clarity of pre-
sentation, all these sets are defined via the generic
set of interpolating points {(0, 0, 0), (1/2, 1, 1),
(1, 0, 0)}.

Fig. 5 Selected patterns with ten-fold symmetry inside the circular bell (see Table 1).
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Example 3.5. Selected Patterns of Ten-Fold Sym-

metry Inside the Bell. Figure 5 shows nine pat-
terns of 10, 000 dots each, all sharing θ1 = θ2 = π/5
and scaling magnitudes equal to 0.99999, but found
following alternative paths of iterations which use
w1 and w2 each 50% of the time. These patterns,

with key characteristics summarized in Table 1, are
not sequential nor equal in size, but have been plot-
ted stretched so that they occupy all available space.
As may be seen, some patterns exhibit radial sym-
metry, while others, as in Figs. 3 and 4, appear to
rotate.

Table 1 Parameters of Fig. 5. From left to right and bottom to top.

r
(1)
1 r

(2)
1 r

(1)
2 r

(2)
2 Seed Initial Point Squares’ Ranges

+ + + + −700 1 −70, 72

+ + + + −23 1 −64, 66

− + − + −23 1 −143, 142

+ + + + −80 1 −75, 75

+ − + + −276 1 −299, 298

+ + + + −111 1 −72, 74

+ − + − −60 10001 −143, 143

+ + + + −864 30001 −74, 77

− + − + −666 10001 −169, 170

Fig. 6 Selected patterns with five-fold symmetry inside the circular bell (see Table 2).
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Example 3.6. Selected Patterns of Five-Fold

Symmetry Inside the Bell. Figure 6 parallels the
previous example but has exotic figures with five
tips, with key characteristic given in Table 2.

Example 3.7. Selected Patterns of Arbitrary

Symmetry Inside the Bell. Figure 7 provides pat-
terns of 10, 000 dots each that are found varying
the angles θ1 and θ2 while maintaining the scalings

Table 2 Parameters of Fig. 6. From left to right and bottom to top.

r
(1)
1 r

(2)
1 r

(1)
2 r

(2)
2 Seed Initial Point Squares’ Ranges

− − + − −60 1 −84, 86

+ − − − −555 20001 −87, 88

− − − − −555 30001 −55, 57

− + − − −13 10001 −66, 67

− + − − −80 1 −70, 70

− + − − −80 10001 −87, 88

− + − − −8 1 −85, 86

− − − + −60 1 −116, 112

− − − + −700 10001 −103, 102

Fig. 7 Selected patterns with three-, four-, five-, seven-, eight-, nine-, 12-, 18-, and 24-fold symmetry inside the circular bell
(see Table 3).
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Table 3 Parameters of Fig. 7. From left to right and bottom to top.

r
(1)
1 r

(2)
1 r

(1)
2 r

(2)
2 θ1 θ2 Seed Initial Point Squares’ Ranges

− + + + 2π/3 4π/3 −60 30001 −56, 61

− − − + π/2 π −80 30001 −130, 131

+ − + + 2π/5 4π/5 −80 20001 −173, 177

+ + + − 2π/7 4π/7 −60 20001 −364, 359

+ − + + π/4 π/3 −80 30001 −80, 81

+ + + − 2π/9 4π/9 −80 10001 −647, 654

+ − + − π/6 π/3 −80 1 −138, 139

− − − − π/9 2π/9 −60 10001 −131, 133

+ + + + π/12 π/6 −60 1 −123, 123

Fig. 8 Selected patterns with six-fold symmetry inside the circular bell via the binary digits of π. Range on squares: −867,
866.
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magnitude at 0.99999. The key characteristics of
these patterns are given in Table 3.

Example 3.8. Selected Patterns of Six-Fold Sym-

metry Inside the Bell Encoded by the Binary

Digits of π. Consider r
(1)
1 = r

(1)
2 = r

(2)
1 = −r

(2)
2 =

0.9999999999, θ1 = θ2 = π/3, and the binary ex-
pansion of π in groups of 100,000 digits to select
alternative paths of iterations. Figure 8 shows the
corresponding 12 frames of 100, 000 dots each, col-
ored according to the used affine mapping, from left
to right and from bottom to top, that result if the
iterations process is started for all frames from the
mid-point (1/2, 1, 1). The largest pattern dictates
the scale of all frames.

4. SUMMARY AND
FINAL REMARKS

As illustrated in this work, there are exquisite crys-
talline symmetric patterns that decompose the bell
in nontrivial kaleidoscopic manners. These sets are
concealed inside the bell and are made explicit via
suitable affine mapping iterations that define fractal
interpolating functions or other general attractors
that are not functions.

As the same unique fractal interpolating
function (or general attractor) is obtained irrespec-
tive of the path of sequential iterations made, pat-
terns obtained via alternative seeds may be added
(after proper standardization) to yield a bivariate
bell as the final outcome of a gigantic jigsaw puz-
zle. In the same spirit, patterns corresponding to
different symmetries may be added together (after
proper standardization) to yield even larger puzzles
that decompose the bell in nontrivial ways.

Interestingly, some of the kaleidoscopic patterns
inside the bell resemble the geometric structure of
relevant natural objects that include: flowers, spi-
ral galaxies, diatoms, marine microorganisms, snow
crystals, viruses, proteins, and projections of DNA
in two-dimensions.9,10 Examples of these patterns
shall be presented in Ref. 11.

Although similar symmetric patterns to those
shown here may be obtained via nonlinear ap-
proaches that do not necessarily lead to the bivari-

ate bell,12 it is not known at this stage if usage of
affine mappings fully characterize all the symmet-
ric patterns concealed inside the bell. Also whether
the ideas may be extended so that they define other
patterns inside other suitable limiting distributions
(e.g. Levy measures) is an open question.
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