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DNA, 7, and the Bell

INTRODUGTION .

ith the advent of X-ray technology since last century, the remarkable struc-
w ture of life’s most relevant building blocks is being revealed. These devel-

opments have led to the discovery of beautiful arrangements, often times
containing nontrivial symmetries, which make up the fabric of biochemistry, e.g.,
Voet and Voet [1]. The present work presents an unexpected connection between
the two-dimensional rosette structure of life’s DNA (and other natural patterns) and
recently discovered mathematical designs that decompose bivariate Gaussian dis-
tributions [2]. This article also shows that the circular bell contains the topological
structure of life’s DNA rosette, when two simple affine mappings are iterated fol-
lowing the binary expansion of the number w. These results add to the vision that
simplicity may be at the root of complexity and suggest that the bell may be of
relevance not only in mathematics and physics but also in biology and chemistry.

The mathematical developrments herein stem from new constructions of Gaus-
sian distributions over one and two dimensions as discovered by Puente [3] and
Puente and Klebanoff [4]. Under these formulations, Gaussian variates are obtained
as projections of arbitrary diffuse measures (i.e., those having continuous cumula-
tive distributions) supported by the graphs of plane- or space-filling fractal inter-
polating functions [5,6).

The organization of this work is as follows. First, the construction of bivariate
Gaussian distributions is explained, followed by a brief account of the induced
decompositions of circular bells. Then, an approximation of life’s DNA rosette as a
mathematical design inside the bell is given and the possible connection between
DNA, m, and the bell is explained. Finally, conclusions and pertinent unsolved ques-
tions are presented.
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THE BIVARIATE GAUSSIAN
DISTRIBUTION AS A PROJEGTION

The graph of a fractal interpolating
function passing by N + 1 nonaligned
data points in a three-dimensional
space (N=2), {(x,, Voo 201 Zg <" - - < Zp}s
is defined as the unique attractor of NV
affine mappings [6]:
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These conditions allow computing
the coefficients c,, f., & P i and j,,
in terms of the data points and the free
parameter matrix
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where r\? and 07 are the scalings and
rotations of the affine mappings.

This setting defines a unique func-
tion from the line (2) to the plane (x, ),
which interpolates the initial set of data
points and whose graph possesses a
fractal dimension between one and
three [6]. Such a graph may be obtained
by progressively iterating the mappings
w, in great many ways, for instance, by
using them randomly in succession, in-
dependently from time to time, and
proportionally to prespecified (and pos-
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sibly noneven) iteration frequencies p,,
TN, p. =1 [7]. Even though any such
iteration scheme ultimately leads to the
same deterministic graph, alternative it-
eration paths, filling-up the attractor in
varying orders, define a vast variety of
stationary diffuse measures (textures)
over the same graph [8].

Figure 1 illustrates how to construct
projections of such stationary measures
over the (x, j) plane, for two sets of frac-
tal interpolating functions that only
vary in their scaling parameters. As is
seen on the left, a fractal interpolating
function with graph shaped as a convo-
luted “wire” (top) yields a stationary bi-
variate measure over the horizontal
(bottom), when a histogram of acquired
points in the function above is made

Fractal interpolating functions and horizontal projections. Data: {{0, 0, 0), (1, 1, %), (0, 0, 1)}.
Rotations: 8{" = 8{2 = 0, 8" = 0! = w/3. Scalings: r= A" = % = 4 = A2, left: r=0.70, right:
r=0.999, The affine maps involved were iterated according to fair coin tosses. The colors
correspond to their respective outcomes.

over the (x, J) plane. As shown on the
right, when the fractal interpolating
function tends to fill up space (top}, a
bivariate Gaussian histogram appears
{(bottom). For the example shown, only
a small portion of the points used to
get a (circular) Gaussian histogram is
plotted, but as may be seen, they land
on an extremely large wire, which be-
comes unbounded as it fills up three-
dimensional space.

Both wires on Figure 1 are obtained
via independent iteration paths based
on fair coin tosses, such that their two
suitable affine mappings (with out-
comes colored blue and red) are em-
ploved 50% of the time each. Because
this iteration scheme yields uniform
textures over both attractors [3], the

COMPLEXITY 17



wire on the right illustrates that a bivari-
ate bell is the limiting projection of a
uniform measure supported by a fractal
interpolating function, when such
wire’s fractal dimension tends toward
three [4].

When biased coins are used to define
other independent iteration paths, the
same attractor now supports nonuni-
form diffuse measures having a mult-
fractal character, e.g. Mandelbrot [9]. As
it may be expected, different (horizon-
tal) projections are now encountered on
both wires in Figure 1, but, surprisingly,
the space-filling case yields bivariate
Gaussian distributions, irrespective of
the chosen iteration frequencies [3,8].
The construction turns out to be univer-
sal as bells, with or without correlations
[3,4], are encountered irrespective of
the coin bias (p,) and also for arbitrary
diffuse measures defined over the wire.
This includes arbitrary singular mea-
sures, which, despite having distribu-
tions that are devil's staircases (e.g.,
Feder [10}]), are transformed into (differ-
ent) bells by the same space-filling wire
[4,8]. This remarkable result implies
that space-filling fractal interpolating
functions are “intrinsically Gaussian”
objects, whose projections transform a
vast class of measures (excluding only
those having discrete jumps) into the
harmonious bell.

Further insight into the construction
via iterations is gained by also comput-
ing vertical projections of the stationary
measures supported by the unique
wires. Such projections define diffuse
multifractal measures over the attrac-
tor's domain, [z,, z5] and represent an
underlying parent texture that is func-
tionally transformed by the fractal inter-
polating function into the bivariate sta-
tionary measures. Because turbulence
phenomena are associated with singu-
lar multifractal behavior (e.g., Sreeniva-
san [11]), space-filling fractal interpolat-
ing functions provide an unexpected
bridge from disorder to order. Surpris-
ingly, the opposite behaviors given by
turbulence and the bell (e.g., diffusion)
appear as the two sides (projections) of
the same infinite attractor set, a wire
that “filters” (transforms) any diffuse
measure (over z) into the ordered bell
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fover the (x, ) plane]. To emphasize the
relevance of this result, it should be
added that the filtering of singular dif-
fuse measures is attained only in the
limiting space-filling case, as the usage
of other fractal interpolating functions
transforms disordered sets (over one di-
mension) into other disordered sets
(over two dimensions) [12].

The following conditions guarantee
the existence of a bivariate Gaussian
over (x, y) (horizontal) from any parent
diffuse measure in z {vertical) [4,12]:

1. the magnitude of all scalings r{?
tends to the limiting value of one,
and

2. the rotations on each map satisfy 0
=02 4 kw, for any integer k.

These requisites ensure the conver-
gence of the iteration procedure while
driving the fractal dimension of the re-
sulting wire toward three. Even though
the construction implies a central limit
theorem, these results are novel, as the

relevant variates are not only depen-

Sequential transient patterns inside the bell (left to right and bottom to top). Data: {(0, 0, 0), (1,
1, 18), (0, 0, 1)). Scalings: {"? = AP = Y = A2 = 0.9999. Rotations: 8{" = 6 = 2n/3, B =
657 = w/3. The iterations path is defined using pseudo-random numbers routine ran? [13] with
-577 as seed and such that w, (in green) and w, (in red) are used, respectively, 70 and 30%
of the time, defining a binomial multifractal measure over z lterations are started at (1, 1, %)
and each frame contains 4000 dots [in (x' })].
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dent, but also nonidentically distrib-
uted and unbounded [8].

DECOMPOSITION OF THE BIVARIATE
GAUSSIAN DISTRIBUTION
In practice, many points within a wire
need to be gathered in order to arrive at
a bell. When more than, say, 15 million
points are counted, close approxima-
tions of bivariate Gaussians are ob-
tained when the magnitude of all
scalings *? is close to the limiting value
of 1, say 0.9999. When all rotations 8%
are synchronized, such that their maxi-
mum common divisor (modulus 27) di-
vides 2, sequential transient symmet-
ric patterns having arbitrary m-fold
symmetry decompose circular bells [2].
As illustrated in Figure 2, these sets are
obtained when the (x, }) coordinates of
successively acquired points on a nearly
space-filling attractor are plotted (just
dropping the z component) in sequen-
tial groups containing few thousand
dots at a time. They yield a value of m
which, depending on sign combina-
tions on the scaling parameters, is the
aforementioned maximum common di-
visor, or half or twice of such a value [2].
Even though biased coins aided by
pseudo-random numbers may naturally
be used to specify a suitable iteration
path, it is relevant to realize that the
geometric sets decomposing the bell
are, at the end, deterministic designs
that lie hidden inside the bell. These de-
signs represent “alternative universe,”
which strongly depend on the actual
path of iterations traveled. Invariably,
however, they provide striking crystal-
line kaleidoscopic patterns having un-
predictable dynamics [2], which by
varying data points, free parameters,
and iteration paths, define great many
sets, Altogether, they expound gigantic
jigsaw puzzles of infinite varieties,
whose pieces remarkably interlock to
yield bells, suggesting that inside the
bell there is hidden order in chance [2].
It is worth remarking, as already
mentioned regarding the filtering of dif-
fuse measures into bells, that it is near
the Gaussian limit, when all scalings
have magnitudes tending to 1, and only
near such a limit, where exotic behavior
is found. In fact, if these parameters are
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all sufficiently small (say, <0.99 in mag-
nitude) evolutions that parallel the one
given in Figure 2 become very predict-
able, as all sequential patterns, e.g.,
with 10,000 dots, give basically the same
approximation of a unique and non-
crystalline attractor [2].

DNA's ROSETTE AND THE BELL

The designs discovered inside the bell
have a wide variety of shapes and some
of them have striking similarity with
natural patterns. They include a host of
rosettes encompassing, among others,
snow crystals and biochemical units

see text.

The planar structure of B-DNA (top) [1] and a close approximation as found inside the bell
(bottom). Data: {(0, 0, 0), (1,1, ¥2), (0, 0, 1)). Scalings: A" = AP = /) = A2 = 0.99999999999.
Rotations: 8" = 0 = of" = 0f) = «/5. The iterations path is defined interactively pasting
pseudo-random numbers so that sequential points land on a template of the rosette. For details,
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such as viruses, proteins, and bacteria
[14].

As shown in Figure 3, a suitable ap-
proximation of life's 10-fold B-DNA ro-
sette may be found inside the bell via
the usage of two simple affine map-
pings that are iterated according to an
interactively defined pathway whose
projected points fill up a template of the
rosette. Specifically, the pattern inside
the bell portrayed in Figure 3 is found
pasting together several groups of 500
“tosses” each, as generated via pseudo-
random numbers routine ranl [13], se-
lecting a suitable group of tosses among
100 groups per seed, as follows: seed
— 4668, group 48; seed —798, group 44;
seed — 367, groups 46, 90, 19, 27, 54, 69,
100, 7, 46, 51, 3, 22, 73, 7, 36, 31, 28, 29,
15, 3, 6,12, 8, 23, 46, 19, 55, 9, 86, 47, 66,
and 77; seed —1675, group 54; seed
—2678, groups 21, 84, 97, 64, 30, 76, 26,
and 43; seed —337, groups 38, 30, 11,
31, 22, 81, 28, 23, and 22; seed —6715,
groups 60 and 83; seed —1212, group
99; seed —3026, group 16; seed —1697,
groups 27 and 83; seed —269, groups
80, 75, 70, 45, 51, 59, 91, 28, and 42; seed
—154, group 9; seed —672, groups 99,
21, 73, 29, and 74; seed — 1662, groups
21, 2, 16, 86, and 31; seed —261157,
group 38; seed —94477, groups 22 and
60; seed — 153, group 95; seed —64100,
group 9; seed —126, groups 92 and 83.
At the end, the set contains 42,500
nodes and excludes the first two groups
in order to recreate the inner hole in the
rosette.

As may be seen, the most relevant
structure of the DNA template is nicely
captured by projecting the sequential
dots that sample the graph of a deter-
ministic space-filling wire. Even though
other iteration pathways can be defined
to produce other suitable approxima-
tions of the template (not included
here), these results suggest that other
symmetric patterns (including other
renderings of life’s DNA rosette, e.g., Ar-
nott et al. [15]) may be literally con-
cealed as pieces of gigantic puzzles that
are components of the circular bell, in a
fashion that has a rather minimal com-
putational complexity.

As arbitrary (pseudo-random) itera-
tions of simple affine mappings yield
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beautiful kaleidoscopes, it becomes
natural to ask if the sequences of digits
making up the expansions of irrational
numbers may encode relevant patterns
inside circular bells. In this spirit, Figure
4 presents some examples of what the
bell contains when the binary expan-
sion of the number « sets up iterations
between two mappings, for a space-
filling wire that results in sets with 10-
fold symmetry.

As may be seen, the digits of = do
provide not only interesting patterns
but also pertinent sets, such as the sec-
ond one that is made up of 20,000 dots
and is shown enlarged in Figure 5, that
gives a topologically correct approxima-
tion of the projection of life’s B-DNA, as
already shown in Figure 3. Notice the
appearance of rings and spokes in the
real and generated patterns that leads
to an unforeseen relation between the

geometric structure of life and the bi-
nary digits of m, through the bell (albeit
an approximation of a frozen picture
over two dimensions). This intriguing
linkage insinuates an unexpected av-
enue for finding “meaning” in the in-
trinsic “randomness” in w and leads us
to wonder what else could its binary ex-
pansion (or others) may encode inside
the bell (or others) in two and in higher
dimensions. I

A preliminary analysis of the first
100,000 binary digits of the numbers V2
and e reveals that they do not encode,
either every 10,000 or 20,000 dots, the
B-DNA rosette while employing the ge-
neric set of interpolating points used in
Figure 4. These results clearly do not
preclude the existence of such a shape
later on or via alternative wires that
pass by other points and rather invite us
to further study the mysteries, of arbi-
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1, %), (0, 0, 1)}. Scalings: AV = AP = 4 =

1, ¥4) and plotting 20,000 dots per frame.

Sequential transient patterns inside the bell (left to right and bottom to top). Data: {(0, 0, 0), (1,

en) = 8§ = m/5. The iterations path is defined using the binary expansion of =, starting at 1,

= 0.99999999. Rotations: 8" = {2 = 67/5,
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The planar structure of B-DNA (top) [1] and a topologically correct rendering as found inside the
bell via the binary digits of = (bottom).

trary symmetries, which are encoded in
the bell via such key numbers and oth-
ers. For as may be appreciated, a set
that at the end is a “simple wire” may
code via one (or many) irrational num-
ber(s) a great many relevant shapes, in a
manner that boggles the mind.
Although the findings in Figure 4
may be just a coincidence, the results
portrayed in Figure 3 give us a glimpse
at how likely it is to find the rosette via
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iterations, as follows. If one counts the
number of cases that land inside the
template used in Figure 3 and follows
such a process stage by stage, i.e., in
groups of 500, and if one assumes that
such numbers are representative of any
other possible path, one may find a
probability for the rosette via their mul-
tiplication as 100, 3, 6, 9, 24, 11, 22, 49,
22,25, 35, 62, 41, 63, 61, 4, 65, 84, 81, 82,
64, 89, 77, 91, 81, 84, 27, 65, 81, 34, 45,

61, 56, 52, 50, 49, 18, 47, 21, 18, 34, 52,
21,40, 41, 52, 44, 14, 43, 54, 49, 19, 7, 13,
521,7,5,6,10, 1, 4,13, 10, 6, 10, 18, 5,
25,1, 8, 13, 15, 8, 10, 17, 11, 9, 10, 12, 8,
7, 14, 10, and 3 (each divided by 100) to
yvield 3.64 x 107%. If the average ac-
ceptance probability for such an exer-
cise, i.e., 0.32, is used to model the 40
groups of 500 points making up the
graph in Figure 5, one gets another es-
timate for the probability of the DNA
rosette as (0.32)*° or 1.61 x 1072°,

As there is an extremely large num-
ber of possible iteration scenarios in-
side the bell (i.e., in powers of 2, yield-
ing 2**%% alternatives when consider-
ing the first two patterns in Figure 4)
and as added richness is obtained by
varying the wire’s interpolating points,
finding the actual probability that the
DNA rosette appears is, at the end, quite
difficult. But the probability appears to
be low, for if, say, just the 10,000th bi-
nary digit of 7 flipped from 1 to 0, then
the rosette shown in Figure 4 no longer
appears.

CONCLUSIONS AND FINAL REMARKS

In consonance with modern work in
nonlinear dynamics, this work stresses
that usage of simple mechanisms and
the concept of projections may be cen-
tral to understand complexity [14,16].
Because the appearance of patterns in-
side the bell evokes the concept of
“emergence of order at the edge of
chaos” [17] and because these sets arise
only when the underlying wire fills up
space, the ideas herein may be termed
as “emergence of order at the plenitude
of dimension.”

As this work presents intriguing new
results, it also raises some important
questions. Why is the DNA rosette (and
other natural patterns) found inside the
bell? Is there a way to harmonize the
existence of biochemical patterns inside
the bell with observed organizational
principles in nature? Could these find-
ings be useful to further understand
natural pattern formation and, in par-
ticular, the structure of life?
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Even though symmetric patterns
similar to those reported herein may be
generated via nonlinear approaches
that do not necessarily lead to the bell
(e.g., Zaslavsky [18]), it is envisioned
that the inherent structure of general-
ized central limit theorems, as implied
by wires in higher dimensions or by
other space-filling sets found via non-

affine mappings, may be of relevance to
study the aforementioned questions.
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