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Abstract

Successful usage of a large family of deterministically gencrated measures to model complex
nonlinear phenomena ge‘g, rainfall, turbulence and groundwater contaminant transport} has
been reported recently.!™’ As these measures, generated as derived distributions of multifractal
measures via {ractal interpolating functions (FIF), i.e. the fractal-multifractal (FM) approach,
have been found to share the inherent character of natural sets, the present study further
investigates their dynamical (chaotic or stochastic) properties. It is shown, through a variety
of examples and via the use of power spectrum, mass exponents and false nearest neighbors in
the state-space, that the FM approach indeed generates deterministic measures whose bchavior
(depending on their parameters) may be classified as low-dimensional and chaotic or as high-
dimensiona! and stochastic. These results suggest the general suitability of the FM approach
for understanding and modeling nonlinear natural phenomena.

1. INTRODUCTION In practice, this involves analyzing a suitable time
series associated with a phenomenon and determin-

A common problem in the study of irregular and ap-
ing the number of dominant variables necessary to

parently random natural phenomena is the assess-
ment of whether their evolution may be understood  allow a complete representation of its underlying
using deterministic chaos or a stochastic approach. dynamics.® If a set is dominated by a few degrees
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of freedom, then a deterministic chaotic model may
be suitable. On the other hand, a stochastic model
may be required when a large number of dominant
variables are involved.

The belief that the noticeable spatial and tempo-
ral variability of natural systems is due to the influ-
ence of a large number of variables has, in general,
led researchers to employ the concept of a stochastic
process to model such systems. However, research
over the past two decades has resulted in a signif-
icant change in direction, as an increasing number
of studies have reported successful applications of
nonlinear deterministic chaotic models.

Even though a host of models, both stochas-
tic and chaotic, have been employed throughout
the years, these approaches possess certain impor-
tant limitations that hamper our ability to fully
describe a complex system. While the stochastic
approaches often require unverifiable statistical as-
sumptions (such as stationarity and ergodicity) and
preserve only some important statistical properties
of the records (rather than the records themselves},
the chaotic procedures, by requiring very large and
virtually noise-free time series, may often lead to
misleading results.

In view of these limitations, it appears neces-
sary to devise a new approach for modeling com-
plex systems. Clearly, such an approach not only
should overcome the aforementioned preblems but
also should yield outcomes that are comparable
to (if not better than) the ones obtained using
these approaches. To this effect, Puente®!? in-
troduced a fractal-multifractal (FM) approach for
modeling complex nonlinear time series (or sets
over higher dimensions) as projections off fractal in-
terpolating functions (FIF) that are “illuminated”
via simple multifractal measures. As the FM ap-
proach requires neither stationarity and ergodicity
nor a minimal record length, it could become a
suitable methodology for modeling complex natural
phenomena.

The FM approach was successfully employed
to model several complex phenomena, such as
rainfall }3-% turbulence,® and groundwater con-
tamination transport.®%7 The results revealed that
the FM (geometric) procedure provides faithful de-
scriptions of the above phenomena that preserve not
only the classical statistical characteristics of the
records but also the multifractal and chaotic prop-
erties present in them. These results also hinted at
a plausible deterministic framework, via the notion

of projections, for studying the dynamics of such
Processes.

The goal of the present study is to illustrate
that the FM approach can be uscd to generate
(deterministic) measures possessing dynamical
properties similar to those reported in the litera-
ture for a variety of geophysical processes and that
include, when analyzed via existing methods, both
“stochastic” and “chaotic” signals. This shall be
achieved considering a variety of FM measures gen-
erated from fractal functions having alternate frac-
tal dimensions and studying their statistical and
dynamical properties.

The organization of this paper is as follows. First,
a brief review of the FM approach is provided,
followed by a summary of the techniques used to
assess whether a given series may be classified as
low-dimensional and chaotic or as high-dimensional
and stochastic. Then, a detailed investigation of
the dynamical properties of two deterministic FM-
derived measures having distinct visual character
and containing 2!® points is provided, to show that
one may be classified as chaotic and the other as
stochastic. As these results are striking, the arti-
cle then presents a complete sensitivity analysis of
another 64 FM sets that confirm the dual dynamic
nature of the deterministic measures. The article
ends with a summary of the results obtained.

2. THE FRACTAL-MULTIFRACTAL
APPROACH

A large number of deterministic measures {some
having multifractal properties?} can be obtained us-
ing the FM approach.%19 As illustrated in Fig. 1,
such measures, Y1 and DY2, are defined as de-
rived distributions of generic multifractal measures,
DX, via FIF, f, and f,, i.e. DYl = DXoff1 and
DY2=DXo fl,"l_. or, in other words, as projections
over the y-axis of the measure DX lifted over the
graph of an FIF.

Generic multifractal measures may be ob-
tained following a multiplicative cascade process
that divides and distributes a uniform measure
{ad infiniturn) into pieces of arbitrary sizes.!! For
instance, the binomial multiplicative measure DX
shown in Fig. 1 progressively divides the uniform
measure over the interval [0,1] into rectangular
pieces of equal sizes containing p; = 60% (left) and
po = 40% (right) of the mass present in the previous
generation.
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Fig. 1 Construction of deterministic FM measures DYl and DY2. Interpalating peints: {(0, 0), (0.5, 1), (1, 0)}; scaling
parameters: d; = 0.7, d2 = 0.5 {left), dy = 0.4, d2 = 0.5 {right); perent multifractal: py = 0.6, p2 = 0.4.

Graphs of FIF over the plane {or in higher
dimensions) are defined as unique attractors of sets
of suitable affine mappings.?!* These are continu-
ous functions that pass by a given set of NV +1 points
on the plane {(5‘30, yﬂ)! (:Cls y].]'.l Has (:I:Ns yN)! To <
T1 < +++ < zn}, and whose graphs may be frac-
tal. They are obtained iterating /V contractile affine

mappings of the form
0 z en
# 1
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forn=1,2,..., N.

The above equations imply that the param-
eters a,, Cn, €n and f, may be obtained in terms
of the coordinates of the interpolating points and
the free vertical scalings, dn. As (2) and (3) give
Gn = (Ty, — Tn_1)/(zNn — o) and hence 0 < a, <1,
for all n, the mappings w, in (1) become contrac-
tile provided that for all n, 0 < |d,| < 1. When this
condition is satisfied, a unique and, hence, deter-
ministic “fixed-point” exists, and that is precisely
the graph G of a function f : 2 — y, which by virtue

of {2} and (3) passes by the interpolating points
G = UN_, wa(G). The dimension D(1 < D < 2} of
the graph of an interpolating function in Ref. 13:
(i) D > 1, the solution of Zldslad™! = 1 if
Tld,| > 1; and (ii) 1, if Z|dx} < L.

Even though general analytical formulas for the
derived measures are not readily available!® (as
illustrated in Fig. 1), a variety of interesting sets
can indeed be obtained by varying the parameters
of f and DX.%10 Also, additional sets may be gen-
erated by allowing projections to be calculated at
an angle 6 other than 90°, and by using generalized
versions of the ideas to higher dimensions.! Depend-
ing on the nature of the FIF, the following overall
behavior is found. When the fractal dimension D
is close to one, derived measures of sizes similar to
those found in applications turn out to have mul-
tifractal properties.? As D grows from one to two,
the measures progressively become absolutely con-
tinuous {i.e. with a density) and in the limit they
become Gaussian.?

As multinomial multifractals represent inter-
mittent natural phenomena,'*1® a descriptive
physical interpretation may be advanced to the
FM-derived measures as “images” or “projections”
of turbulence-related phenomena. These measures
become relevant in applications as they are parsimo-
niously encoded and as they do not exhibit geomet-
ric repetitiveness ad infinitum, a common objection
against the use of fractal geometry.
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It is important at this point to further stress
some merits that the FM approach may have
over the other existing methods. First, the ap-
proach is entirely deterministic, as both the par-
ent multifractal measure and the transforming
mapping may be uniquely obtained via simple re-
cursive procedures.!® Second, the methodology fo-
cuses on a wholistic geometric description of a given
(normalized) set, rather than the preservation of
relevant (multifractal) statistics, as is typically the
case with other models.'%17 Third, the approach
does not rely on regularity assumptions, such as
stationarity and ergodicity, as most stochastic ap-
proaches do.

3. DISTINGUISHING CHAOS
AND STOCHASTICITY

The dramatic recent advances in nonlincar science
and the rapidly growing set of tools for nonlinear
time series analysis have brought about a major
methodological revolution in studying many nat-
ural systems. Now it is known that: (1) systems
can either be deterministic and chaotic or be ran-
dom and unpredictable; {2) seemingly random phe-
nomena may contain hidden structures; (3) systems
may not necessarily get simpler as they are broken
down; (4) infinitesimal causes can hamper our abil-
ity to predict; (5) complex systems may have sim-
ple solutions; and (6) simple equations can produce
very complex behaviors. Among the large number
of discoveries/theories that make up the nonlinear
revolution, chaos theory has gained significant pop-
ularity in almost all fields of natural and physical
sciences.

Central in a chaotic analysis of a signal is the
notion of phase-space reconstruction, a topological
representation of the given information via a set
of suitably chosen coordinates, that allow visualiz-
ing the dynamics of a phenomenon. The physics
behind such a reconstruction stems from the fact
that nonlinear systems are characterized by self-
interaction. Given a time series X(f), £ =1,..., n,
coordinates are typically obtained using a delay
time 7, so that successive m-dimensional embed-
dings Y; = (X(t), X(t —7),..., X(t — (m - 1)7)},
m = 2,..., are studied.!®!® Then, systems are
classified as follows. When the signal yields sta-
ble behavior for low-dimensional representations
(e.g. a fractal dimension of a strange attractor) and
sensitivity to initial conditions is confirmed (i.e.
via a positive Lyapunov exponent), the system in

question is termed chaotic. Alternatively, when
such a stable behavior is not encountered and an
increasing number of coordinates are required, the
phenomenon under study is classified as stochastic.

In this work, the delay time T was defined based
on the autocorrelation function?® and on the mu-
tual information function®! of the records. Specifi-
cally, the number of lags to the first local minimum
of such functions and the distance to a correlation
equal to 1/e?? defined three alternative scenarios
to be analyzed. In regards to the procedure used
to classify the signals, the present study relies on
the method of false nearest neighbors within the
phase-space.?® Such a method examines whether
the attractor is properly unfolded and yields a min-
imum embedding dimension when the number of
false nearest neighbors drops to zero.** Also, this
procedure avoids some of the practical limitations
encountered with the popular correlation dimension
method 3%

4. DYNAMICAL PROPERTIES
OF DERIVED MEASURES
DY1 AND DY2

As previously illustrated in Fig. 1, the FM pro-
cedure may be used to generate sets of arbitrary
lengths that have a distinct character. This section
presents a detailed dynamic analysis of sets DY1
and DY?2, obtained as histograms over 2'° (65536)
bins in y of 800 x 10° points within the graphs of
functions fi and f, as found iterating two affine
mappings [Eq. (1)] using pseudo-random coin tosses
with a 60-40% skew, ensuring a binomial multifrac-
tal measure DX over .

As can be seen, DYl and DY2, coming from
functions that pass by the same set of three points
{(0, 0), (0.5,1), (1, 0}}, indeed possess different ap-
pearances and textures that reflect alternative fil-
terings of DX as performed by functions f and fo.
Since DY1 results from an FIF whose graph has a
fractal dimension greater than one {D = 1.263), it
integrates the parent measure and possesses much
less variability than DX. As DY2 is found via a func-
tion that is not fractal (D = 1}, its texture is more
intermittent, for it inherits the features present in
DX.

The fact that DY1 and DY?2 are distinct may be
further appreciated calculating some of their statis-
tics. As shown on the top of Fig. 2, both signals are
fairly complex as they exhibit power-law scaling on
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Fig. 2 Sample statistics for deterministic FM measures D¥1 and DY¥2: (i) Power spectrum, S(f) ~ f~#, {ii) Mass exponents,
7(g); and (iii) Percentage of false neighbors, % FNN, for alternative delays, 7, as a function of embedding dimension, m.

their power spectrum (over four cycles}, and yicld a
1/1% noise (8 = 1.42) for DY1 and a more irregular
1/f noise (3 = 1.09) for DY2. As depicted in the
middle of Fig, 2, these trends are also noticed while
comparing the mass exponent plots for both sets
(i.e. the scalings 7(g)} of sums of a measure raised to
a power ¢). Observe, in particular, the alternative
entropy dimensions obtained for the two sets (0.989
and 0.973, respectively) that confirm that DY¥2 is
more “disorganized” than DY1.

The aforementioncd trends remain when calcu-
lating the necessary number of lags for phase-spacc
reconstructions as reported before, for the fact that
DY?2 is more irregular than DY1 is reflected in a
smaller of lags: 26 versus 245 to the first local min-
imum of the autocorrelation function, 472 versus
4860 to a correlation equal to 7!, and 20 versus

133 to the first local minimum of the mutual infor-
mation function.

As shown in the bottom of Fig. 2, the dynami-
cal behavior of the two measures, as quantified by
the percentage of false near neighbors of successive
embeddings for dimensions up to 15, turns out to
be quite distinct. On the one hand, and surpris-
ingly, DY1 yields a behavior that fully unfolds at
low dimension m that equals 5 or 6, for delays 7
that include the one defined by the mutual informa-
tion analysis (i.e. 133) and two others below (i.e. 32
and 64). On the other hand, and also surprisingly,
the percentage of false near neighbors for DY2 nei-
ther reaches zero nor remains stable (after reaching
the minimum of about 10%), indicating that for de-
lays defined by the first local minima of the mutual
information and autocorrelation functions (i.e. 20



96 C. E. Puente et al.

and 26), and also for 7 = 32, such a measure does
not unfold and therefore may be classified as high-
dimensional.

As the largest Lyapunov exponents analysis for
the two measures, employing all alternate recon-
structed attractors, yield positive values, indicating
sensitivity to initial conditions, these results suggest
that the deterministic measure D¥1 may be consid-
ered as the outcome of a dynamical process that is
low-dimensional and chaotic, while DY2 (also de-
terministic by construction) may be termed high-
dimensional and stochastic.

5. DYNAMICAL PROPERTIES
OF OTHER DERIVED
MEASURES

As the results just reported are intriguing, given the
deterministic nature of the analyzed sets, this sec-
tion presents a sensitivity analysis aimed at iden-
tifying general dynamic conditions for other FM-
generated measures. As the results clearly depend
on the amount of filtering performed by an FIF,
such analysis includes varying the scalings of the rel-
evant affine mappings [Eq. (1)] and hence the fractal
dimensions of graphs of such fractal functions.

To this effect, another 64 FM-derived measures
were generated, 32 coming from fractal functions
whose graphs have fractal dimensions greater than
1 and the remaining 32 from functions whose graphs
have fractal dimensions equal to 1. To keep the
analysis manageable, all the new measures were
penerated over the y-axis (i.e. maintained # = 0°),
had the same data size as that of DY1 and DY2
(i.e. 65536 values), used the same parent binc-
mial multifractal measure DX as before (p; = 0.6,
py = 0.4), and came from FIF that pass by the
same set of three points {(0,0), (0.5,1.0) and
(1, 0)}.

These two groups of measures, shown in Figs. 3
and 4 respectively, were obtained using the FM pa-
rameters presented in Tables 1 and 2, and include
all different sign combinations on the scalings dy
and dy, namely case 1: both positive; case 2: posi-
tive, negative; case 3: negative, positive; and case 4:
both negative. As presented in Tables 1 and 2
{fourth column), the first group of measures (Fig. 3)
uses fractal functions whose graphs have fractal di-
mensions (D) between 1.263 and 1.485, while the
second group (Fig. 4) employs FIF, whose graphs’
dimension equals 1.

m M c3d8d5S c4d9d5S
c1d6d8 cZ2dbda c3d4648 c4d6d8

¢1dB8d5 c2dBdS

M c3d8d5 c4d8d5
¢1d7d6 c2d7d6 c3d7d6 c4d7d6
c1d5d8 c2d5d8 ¢3d5d8 c4dbd8

3
.
=

c1d7d5 c2d7d5b c3d7d5 c4d7d5
c1d4d8 c2d4d8 c3d4d8 ¢4d4d8

E
-

c1d3d9 c2d3d9 c3d3d8

1

Fig. 3 FM derived measures as defined in Table 1.

As can be seen in the first column of Figs. 3 and
4 (ie. for di and dy both positive), and in conso-
nance with the results presented for DY1 and DY2
{sixth row of Fig. 3 and seventh row of Fig. 4},
measures associated with higher fractal dimensions
(Fig. 3) contain many positive values and are typi-
cally more correlated and less intermittent than the
others (Fig. 4).

These trends, although maintained in most sign
combination cases on the affine mapping scalings,
are not fully consistent for there are few instances
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Fig. 4 FM derived measures as defined in Table 2.

in Fig. 3 (i.e. fifth row, columns three and four;
and seventh and eighth rows, columns two to four)
and in Fig. 4 (e.g. fourth and fifth rows, columns
two to four) that are dominated by few large peaks.
These happen because the dimension of the graph
of an FIF alone (for the cases shown) does not de-
fine completely the nature of the derived measure.
For instance, the set on the fifth row and third col-
umn in Fig. 3 shows a measure dominated by few
peaks because the skew in DX (ie. higher on the
left) is “canceled” by the down-up notion of the
fractal function (i.e. dy = —0.5, dg = 0.8).

Fig. 5 Power spectrum, S{f) -~ P, for measures in
Fig. 3. Log-log axis have horizontal and vertical scales of
[1.0e — 5, 1.0¢ ~ 0] and {1.0e — 19, 1.0e — 11}, respectively.

Figures 5 and 6 show that all sets in Figs. 3 and

4 exhibit power scaling in their power spectra, al-
though some sets exhibit better linear fits than oth-
ers. Even though there is no one-to-one relationship
between the relevant scaling exponent 3 {calculated
via a regression based on the last half of the values)
and a given combination on FM scalings, notice that
the overall trends encountered earlier with DY1 and
DY?2 remain. For the spectra in both figures re-
flect the general nature of the derived measures and
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Table 1 Scaling parameters, di and dz2, dimensions of graphs of fractal
interpolating functions, I}, first local minimum of autocorrelation func-
tion, p{fim), decay time to e~! on autocorrelation, p{e™!), first local
minimum of average mutual information function, I{flm}, and entropy
dimension of derived measures, (Dh) oy, for sets in Fig. 3.

Set dy da D p(fim) ple”?) I(ftm) (Dr)or
c1dads 0.9 0.5 1.485 16384 11501 282 0.998
c2d9d5 0.9 -0.5 1.485% 7758 3675 267 0.998
34945 —0.9 0.5 1.485 5279 3529 343 0.699
c4d9ds -0.9 —0.5 1.485 3239 2604 226 0.999
c1d6d8 0.6 0.8 1.485 B283 10096 2149 0.998
c2d6d8 0.6 —0.8 1.485 2323 5912 136 0.697
c3d6dB -0.6 0.8 1.485 307 3050 168 0.995
c4dbd8 —-0.6 0.8 1.485 340 3502 205 (.996
cld8d5 0.8 0.5 1.378 845 9626 230 0.995
c2d8ds 0.8 -05 1.378 941 2990 194 0.997
c3d8d5 0.8 .5 1.378 1662 2118 231 (.998
c4d8ds -0.8 —0.5 1.378 796 2468 181 0.997
cld7dé 0.7 0.6 1.378 1655 11037 112 0.996
c2d7d6 0.7 —0.6 1.378 1712 3386 265 0.997
c3d7dée - —0.7 0.6 1.378 1433 2507 165 0.997
c4d7d8 -0.7 —06 1.378 1077 6282 217 0.997
cld5d8 0.5 0.8 1.378 215 7347 109 (.994
c2d5d8 0.5 -08 1.378 98 1814 70 0.986
¢3d5d8 -Q.5 0.8 1.378 10 265 12 0.969
c4dbds -0.5 —-0.8 1.378 6 601 36 0.975
c1d7d5 0.7 0.5 1.263 245 4860 133 0.689
c2d7d5 0.7 —0.5 1.263 210 2489 120 (.950)
c3d7d5 —-0.7 0.5 1.263 486 1488 165 0.991
c4d7d5 -0.7 —0.5 1.263 213 4079 129 0.992
¢ld4ds 0.4 0.8 1.263 39 G388 37 0.990
c2d4d8 0.4 -0.8 1.263 18 126 34 0.969
c3d4ds —0.4 0.8 1.263 16 63 63 0.934
cd4d4d8 —-0.4 —0.8 1.263 32 159 41 (.955
c1d3d9 0.2 0.9 1.263 9 248 9 0.987
c2d3dg 0.3 —-0.9 1.263 12 T4 35 0.968
c3d3d9 —-03 0.9 1.263 8 75 22 0.929
c4d3d9 —-0.3 -09 1.263 22 113 61 (0.954

hence give larger exponents when sets are produced Tables 1 and 2, in their fifth, sixth and sev-

by fractal functions whose graphs have dimensions  enth columns, include information regarding delay
greater than one. Overall, sets in Fig. 3, except  times as defined from the autocorrelation function
possibly those dominated by few large peaks, may  {(i.e. p(fim), ple~1)) and mutual information func-
be termed as “pink noises” (1/f7), whereas those  tion (i.e. J{flm}). As may be seen, most measures
in Fig. 4 may be described as “1/f noises.” in Fig. 3 (except those dominated by few peaks)
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Table 2 Scaling parameters, d; and dz, dimensions of graphs of frac-
tal interpolating functions, D, first local minimum of autocorrelation

function, p(fim), decay time to

-1

e

on autocorrelation, p(e™"), first

local minimum of average mutual information function, I(fim), and
entropy dimension of derived measures, (D1)py, for sets in Fig. 4.

Set dy dz D p(fim) ple™') I(fim) (Di)py
cldBdd2 0.8 0.2 1 4 867 3 0.955
c2dBd2 0.8 ~0.2 1 25 132 37 0.961
c3d8d2 08 .2 1 19 148 G5 0.970
cdd8d2 -0.8 .2 1 21 77 48 0.970
cld7d3 0.7 0.3 1 3 366 8 (.955
¢2d7d3 0.7 —-0.3 1 43 486 58 (.962
c3d7d3 0.7 0.3 i 23 255 58 0.966
cdd7d3 ~-0.7 -0.3 1 63 156 43 {.963
cld6d4 0.6 04 1 7 2250 4 0.965
c2d6id4 0.6 —-0.4 1 59 599 32 0.963
c3dad4 ~0.6 0.4 1 46 227 30 0.956
cddbd4 -0.6 0.4 1 51 771 26 0.960
cld3d7 0.3 0.7 1 11 4568 5 0.981
c2d3d7 0.3 -0.7 1 4 27 16 0.965
c3d3d7 —-0.3 0.7 1 18 82 25 (0.945
c4d3dT -0.3 -0.7 1 7 46 29 0.957
cld2d8 0.2 03 1 3 814 3 0.980
c2d2d8 0.2 —Q.8 1 13 125 13 0.970
c3d2ds —-0.2 0.8 1 7 15 7 0.952
c4d2d8 0.2 -0.8 1 18 35 0.963
cld5d4 0.5 0.4 1 26 420 39 0971
c2d5d4 0.5 ~0.4 i 32 74 59 0.957
c3d5d4 -5 0.4 1 6 29 21 0.938
c4dbd4 -0.5 0.4 1 9 170 16 0.952
cld4d5 G4 0.5 1 26 432 20 3973
c2d4db .4 —0.5 1 28 39 21 0.958
c3d4d5s -0.4 0.5 il 18 45 66 0.942
cdd4d5 0.4 —-0.5 1 6 173 29 0.959
cld1d8 0.1 0.8 1 6 96 6 0.972
cldids .1 0.8 1 6 283 14 0.980
cldlds —-0.1 0.8 1 7 207 4 0.970
¢ld1d8 -0.1 -0.8 1 9 172 4 0.978

exhibit indeed larger correlation lengths and larger
delays to the first local minimum of the mutual in-
formation function than those in Fig. 4. These over-
all trends are confirmed by the measures’ entropy
dimensions, (D)) py, as reported on the last column
of Tables 1 and 2. Notice that the correlated mea-

sures in Fig. 3 give values close to the measures’
support, i.e. one, and that the very noisy ones in
Fig. 4 and those dominated by few large peaks in
Figs. 3 and 4 give dimensions smaller than one.
Figures 7 and 8 summarize the analysis of false
near neighbors, up to ten embedding dimensions
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Fig. 6 Power spectrum, S(f) ~ 7, for measures in
Fig. 4. Log-log axis have horizontal and vertical scales of
[1.0e — 5, 1.0 — 0] and [1.0e — 19, 1.0e — 11], respectively.

and using the delay as defined from the mutual in-
formation function, performed on both groups of
sets in an aftempt to classify their inherent dy-
namics. As is scen, the more correlated measures
in Fig. 3 result in stable low-dimensional unfold-
ings having four, five or six coordinates (Fig. 7).
On the other hand, those more erratic sets, that
are either highly uncorrelated or dominated by few
large peaks in Figs. 3 and 4, do not show stabi-
lization on the percentage of false near neighbors

Fig. 7 Percentage of false neighbors, %FNN, as a func-
tion of embedding dimension, m2, for measures in Fig. 3.
The horizontal and vertical scales are [0, 10] and [—10, 100],
respectively.

(Fig. 8), and then may be termed dynamically high-
dimensional. Notice that these observations are in
agreement with the aforementioned analysis per-
taining to Tables 1 and 2. As Lyapunov exponent
calculations {not presented here) suggest that the
analyzed measures yield sensitivity to initial condi-
tions, these results confirm that the FM approach
may be used to simulate both chaotic and stochastic
signals.
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Fig. 8 Percentage of false neighbors, %FNN, as a func-
tion of embedding dimension, m, for measures in Fig. 4.
The horizontal and vertical scales are [0, 10] and [-10, 100,
respectively.

It is worth remarking that the minimal number
of embedding dimensions found for the determinis-
tic sets in Figs. 3 and 4 are, in general, related to
the observation that stochastic processes with 1/f8
power spectra may define such minimal dimensions
via saturation in correlation dimension calculations,
Le. d = 2/(8 — 1).® Notice, for instance, that DY1
and DY?2, having § values of 1.42 and 1.09, respec-
tively, yvield d values of 4.76 and 22.2 that indeed

capture the low- and high-dimensionality of those
sets, but, as there is ample variability on § values
in Figs. 5 and 6 {with several values less than one),
no general conclusions may be drawn,

8. CONCLUSIONS

It has been illustrated that the FM methodology, a
deterministic geometric procedure aimed at repre-
senting complex positive time series wholistically as
projections of multifractal measures supported by
the graphs of FIF, produces a host of 1/f# multi-
fractal noises possessing varied textures and appear-
ances, whose dynamic behavior may be classified,
depending on FM parameters and mutual informa-
tion calculations, as low-dimensional and “chaotic”
or high-dimensional and “stochastic.” These find-
ings, apparently contradictory given the determin-
istic nature of the FM representation, support the
vision that the concept of projections may be a suit-
able alternative in the study of a variety of natural
records.
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