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This study introduces the deterministic fractal-multifractal (FM) approach and some of its variants for
encoding, for the first time, streamflow data. For this purpose, daily streamflow records gathered over
65 years at the Sacramento River in California, USA are studied. The specific FM representations consid-
ered here include three main categories and six cases as follows: (i) the original FM approach, yielding a
data set as a fractal transformation of a multifractal measure, and obtained by iterating two and three
affine maps; (ii) an extension, defining records as a transformation of an input measure by a general
attractor (not a function), also obtained by iterating two and three affine maps; and (iii) two procedures
that loop two fractal functions or two general attractors, providing a data set as a weighted projection via
the iteration of a total of four affine maps each. Highlighting the results obtained for six different years of
records having distinct geometries, it is shown that all six FM variants yield faithful representations, as
evidenced by the maximum errors in accumulated records never exceeding a mere 2%. Of all approaches,
however, it is shown that the one based on three affine maps, leading to substantial compression ratios of
28:1, is generally the best, for such end up following the geometry of all sets rather closely. As illustrated
for the whole 65-year period, the time evolution of the FM parameters may be useful to track and predict
changes in streamflow over time.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction Rodríguez-Iturbe (1986), Sivakumar et al. (2001), Yang et al.
The quest for understanding complex natural records, such as
rainfall and streamflow, has led to the development of determinis-
tic and stochastic models since the 1960s. Various ideas have been
tried in order to model natural phenomena. Such include usage of:
(a) physically-based models, (b) classical stochastic models, and (c)
fractal-stochastic models. While the first are based on well-
accepted physical principles such as conservation laws, the others
seek to preserve statistical/fractal properties in the records such as
autocorrelation and co-dimension functions. The past decades
have witnessed numerous applications of these ideas and models
in hydrology; for details, see Eagleson (1970, 1978), Freeze and
Cherry (1979), Kavvas and Delleur (1981), Mandelbrot (1982),
(2007), Özger et al. (2010), Chen and Wu (2012), Tongal et al.
(2013), and Poornima and Jothiprakash (2015), among others.

Although these approaches yield reasonable representations of
the overall structure of the data, due to their underlying assump-
tions, they do not always capture the finer details and textures pre-
sent in natural records. For instance, in the physical approaches,
the lack of spatial records leads to discretization and computa-
tional issues, and in the classical stochastic methods the specific
realizations are hard to condition to mimic the specific geometry
of a given set. Even though the fractal-stochastic methods, with
the addition of fractal and multifractal notions, have resulted in
more realistic simulations and models (e.g., Lovejoy and
Schertzer, 2013), the specific geometries of sets still require of a
new ‘‘language” for describing their complexity.

These intrinsic limitations led Puente to think that perhaps the
erratic, intermittent, complex, and altogether ‘‘seemingly random”
nature of the records could be modeled as a projection of a fractal
function. Inspired by the simplicity and depth of the work
by Lorenz (1963), the discovery of a simple cascade to model
fully-developed turbulence by Meneveau and Sreenivasan (1987),
and the seminal work of Barnsley (1988), Puente (1996) developed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2016.09.029&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2016.09.029
mailto:cepuente@ucdavis.edu
http://dx.doi.org/10.1016/j.jhydrol.2016.09.029
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


M.L. Maskey et al. / Journal of Hydrology 542 (2016) 564–580 565
the fractal-multifractal method bymeans of which a given (normal-
ized) natural set is thought of as the derived measure found by
transforming amultifractalmeasure via a fractal interpolating func-
tion. Such an idea, known as the fractal-multifractal (FM) method,
has turned out to be a fertile approach to parsimoniously and deter-
ministically encode complex geophysical patterns in order to
explore the complexity of nature. Indeed, the FM approach and its
variants have been shown towork reasonablywell in defining a vast
class of patterns (Puente, 2004), over one and higher dimensions,
preserving not only the key statistical indicators (e.g., moments,
autocorrelation, power spectrum, multifractal spectrum) but also
the overall geometric features and textures present in the data sets.
While stochastic approaches are typically not capable of preserving
finer details beyond the main statistical features, the FMmethodol-
ogy is found to yield indeed fruitful results in encoding a host of geo-
physical records, such as precipitation sets (e.g., Puente and
Obregón, 1996; Cortis et al., 2009, 2013; Huang et al., 2012, 2013;
Maskey et al., 2015), fluid turbulence (Puente and Obregón, 1999),
river width function (Puente and Sivakumar, 2003), and groundwa-
ter contamination patterns (Puente et al., 2001a, 2001b).

The present study demonstrates, for the first time, the capabil-
ity of six distinct variants of the FM approach to encode streamflow
data. For this purpose, daily streamflow records gathered over a
period of 65 years in the Sacramento River are studied and an
attempt to understand the dynamics of streamflow based on FM
geometric parameters is ascertained. For the purpose of illustra-
tion, six different years having distinct geometries are discussed
in detail, comparing the performance of the different FM
approaches in terms of a visual inspection as well as a number of
statistical qualifiers. Having identified the best FM model, a novel
visualization of the dynamics of the process is then advanced.

The organization of the rest of this manuscript is as follows.
First, the original FM approach and the variants used in this study
are reviewed. Second, the optimization procedure and strategy
used to encode streamflow records are advanced. Third, the results
from the different approaches for each of the six distinct years of
streamflow records considered for illustration are reported. Fourth,
the best FM encodings over 65 years of records and their implied
dynamics are reported. Finally, a summary of the results and con-
clusions of the study are given.
2. The Fractal Multifractal (FM) approach

This section summarizes the original FM approach (Puente,
1996) and introduces the other variants of the procedure used in
this study for encoding streamflow records.

2.1. The original method

Utilizing fractal interpolating functions, pioneered by Barnsley
(1988), Puente (1996) introduced the FM procedure. The notions
rely on finding the projection – over the range of a fractal function
– of the unique multifractal measure induced by iterating simple
maps that determine the graph of such a function. Specifically, a
fractal function f: x? y, passing through N + 1 non-aligned points
fðxn; ynÞ j x0 < . . . < xN; n ¼ 0;1; . . . ;Ng and resulting in a graph
G = {(x, f(x)) | x 2 [x0, xN]}, is defined from successive iterations of
N simple affine maps:
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where dn, the vertical scaling parameters, satisfy |dn| < 1 and the
other parameters an, cn, en and fn are evaluated, in terms of the inter-
polating points and the scaling parameters, from contracting initial
conditions:
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which guarantee the existence of a stable attractor G (Barnsley,
1988).

As the process is carried out, iterating the affine maps according
to arbitrary and fixed ‘‘coin tosses,” it: (a) produces, via a point-wise
samplingof the attractorG knownas the ‘‘chaos game,” a convoluted
‘‘wire” function f, whose graph has a fractal dimension D 2 [1, 2);
and (b) induces a unique invariantmeasure overG, whose projected
histograms over the x- and y-coordinates are, respectively, deter-
ministic multinomial multifractal measures (Mandelbrot, 1989)
and derived measures (via function f) that resemble the intricate
irregular shapes akin to natural patterns. At the end, the original
FM representation transforms a multifractal measure dx into a
derived measure dy via a fractal interpolating function f.

To further illustrate the ideas, consider the two affine maps:
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associated with the interpolating points {(0, 0), (0.66, �0.85), (1, 1)},
and iterated 214 times according to a 56–44% proportion. As seen in
Fig. 1, with interpolating points shown as bullets, these iterations
induce a fractal function f, having a fractal dimension D = 1 (top left)
and two unique invariant measures over the two coordinates: dx
(below) over the x-axis and dy (to the right) over the y-axis. While
dx comes from a multiplicative cascade and yields a multifractal
measure exhibiting a rather repetitive appearance (Mandelbrot,
1989), the derived measure dy, found transforming (over y) the
input dx via the function f, gives rise, after local smoothing (shown
on the right as dys), to a set that resembles geometrically (after a 90
degree flip and interpreting y as time and dy as discharge), a daily
streamflow time series, and other sets as encountered in nature
(Obregón et al., 2002a, 2002b; Puente, 2004).

Requiring little effort in the implementation, which simply pro-
vides a collection of (x, y) points via the arbitrary iterations guided
by a ‘‘coin,” i.e., the chaos game, – as included in the Matlab code in
the Online Appendix http://puente.lawr.ucdavis.edu/omake/jhy-
dro2016/jhydro2016.html, the measures dx and dy are simply the
computed histograms over x and y that may be obtained at arbi-
trary resolutions. As shall be explained later on, the FM parameters
in the maps in Eqs. (3) and (4) are obtained via an optimization
exercise such that the shown object dys resembles the geometry
of normalized streamflow (minus baseflow) as gathered at the
Sacramento River in 1968, hence using a total of 365 or 366 bins
for computing the output measure dy and a 5 day smoothing to
define dys. The reader is encouraged to consider the Online Appen-
dix, as it also includes an interactive demo, based on Fig. 1, of the
patterns the FM method may produce.

To summarize, the original FM method requires, for the encod-
ing of a given natural set, the solution of an inverse optimization
problem that relies on the following parameters: (a) the fractal
interpolation points, (b) the vertical scalings dn, (c) the frequencies
used in the iteration of the affine maps, and (d) a smoothing
parameter as in Fig. 1, if needed. Ultimately, the FM approach
requires six and ten geometric parameters when using two and
three affine maps, respectively.

2.2. A generalization to leafy attractors

The original FM approach can be generalized replacing the con-
tractile initial conditions in Eq. (2) by the more general conditions
(Huang et al., 2013)

http://puente.lawr.ucdavis.edu/omake/jhydro2016/jhydro2016.html
http://puente.lawr.ucdavis.edu/omake/jhydro2016/jhydro2016.html


Fig. 1. The original FM approach: from a multifractal dx to a projection dy, via a fractal interpolating function f: x? y. dys is a smoothed version of dy.
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where each affine map, as in Eq. (1), is associated with possibly
non-touching end-points {(x0, y0), (x2n, y2n)} and {(x2n+1, y2n+1),
(x2N�1, y2N�1)}, satisfying x0 6 x2n < x2nþ1 6 x2N�1; n ¼ 1; . . . ;N.

This new setting typically generates a cloud of points rather
than a single-valued function, a more sophisticated attractor – akin
of a fractal ‘‘leaf”. This happens when the end-points overlap over x
or when successive end-points in y are different. Fig. 2 exemplifies
such a leafy attractor obtained by iterating the two affine maps:

w1
x

y

� �
¼ 0:70 0

5:07 �0:61

� �
x

y

� �
ð6Þ

w2
x

y

� �
¼ 0:31 0

0:10 �0:57

� �
x

y

� �
þ 0:68

1:47

� �
; ð7Þ
Fig. 2. The FM approach from maps with an overlap: from an input measure dx, to
according to a 56–44% proportion.
As may be inferred, the maps have as end-points {(0, 0),

(0.70, 4.45)} and {(0.69, 1.47), (1, 1)} (shown in circles in Fig. 2)
and have as scaling parameters d1 = �0.61 and d2 = �0.57. Clearly,
the two maps w1 and w2 contract the domain [0, 1] into the sub-
intervals [0, 0.70] and [0.69, 1], hence having an overlap of 0.01
between them, which, compounded by the fact that the end
y -values differ (i.e., 4.45– 1.47), yields a leafy attractor having a
repetitive structure.

As illustrated in Fig. 2, the projection over x, of the unique mea-
sure induced by playing the chaos game with these maps over the
ultimate leaf, is, once again, a spiky measure dx, which, when
transformed by the cloud of points, yields the derived projection
over y called dy. The measure dy, which is simply the histogram
over y of all points gathered via the chaos game (for a given num-
ber of equal bins spanning the minimum and the maximum of the
an output projection dy, via a ‘‘leafy” attractor. dys is a smoothed version of dy.
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range of the attractor), results again in an irregular pattern that,
after due smoothing (see dys on the right hand side), happens to
resemble the geometry of geophysical records, such as a stream-
flow set in the Sacramento River in water year 2008.

In the same vein as with the original FM approach, usage of
these ideas on a practical setting requires the solution of an inverse
problem for the generalized FM parameters: (a) the end-points of
maps that define contracting placings of the generalized attractor,
(b) the vertical scalings dn, (c) the frequencies used in chaos game
iterations, and (d) a smoothing parameter, if any. This FM variant
ultimately requires eight and 14 parameters when iterating two
and three affine maps, respectively. For more information on this
extension, the reader may access the Online Appendix http://
puente.lawr.ucdavis.edu/omake/jhydro2016/jhydro2016.html,
which also includes a Matlab code for such a generalization and an
interactive demo for the notions based on the pattern in Fig. 2.

2.3. Extensions closing a loop

The notions just explainedmay also be extended by using either:
(a) two fractal interpolating functions having equal interpolating
points over x but distinct intermediate vertical placements and ver-
tical scalings, or (b) two leafy attractors having the same original
end-points in x butwith possibly different intermediate placements
in y. Bymaintaining the same iteration frequencies in the respective
chaos games, the weighing of the individual projections over y, via
an additional parameter, also yields interesting projections dy
(Huang et al., 2012). These ideas that essentially close a loop of frac-
tal functions or leafy attractors are illustrated next.

Fig. 3 shows the construction of a loop of fractal functions f1 (in
black) and f2 (in gray), which pass by the following sets of three
interpolating points {(0, 0), (0.69, �4.95), (1, 1)} (black dots) and
{(0, 0), (0.69, �3.33), (1, 1)}, (gray dots) and associated, respec-
tively, with maps w1 and w2 and ŵ1 and ŵ2:
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Fig. 3. Closing the loop using two FM wires: from a multinomial multifractal measure dx
found weighing dy1 and dy2 and dys is a smoothed version of dy.
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iterated, by couples, according to a 55–45% ‘‘coin.”
As shown, the derived measures based on each fractal function,

dy1 and dy2, when weighed according to a 33–67% split, yield the
interesting set dy, which when smoothed gives another set dys that
resembles geometrically geophysical (e.g., streamflow) data, in
particular flows at the Sacramento River for water year 1958. As
expected, this generalization results in additional parameters,
which, for two maps, as will be used later on, require a total of
ten parameters: (a) the intermediate interpolating points in x, (b)
the intermediate interpolating points in y, (c) the vertical scalings,
(d) the frequencies used in chaos game iterations, (e) the propor-
tion by which the two projections are combined, and (f) a smooth-
ing parameter, if necessary.

Fig. 4 presents the counterpart of Fig. 3, but based on looping
two general attractors, each generated by two affine maps, as indi-
cated by the black and gray circles. As seen, the combination of the
resulting projections turn out to be also interesting, and such a rep-
resentation relying on 13 FM parameters, that is, is similar in size
as using a leafy attractor based on three maps, also generates, after
due smoothing, sensible approximations of the geometry of
streamflow data, this time a close rendering of river flows at the
Sacramento River for water year 2008.

3. Methodology

Once a parameter set is given for any variant of the fractal-
multifractal method, it is easy to calculate a given derived measure
dy at any desired resolution, i.e., 365 or 366 bins as is appropriate
for a given year. As explained in the aforementioned Online Appen-
dix, the chaos game is certainly simple and its implementation effi-
cient. However, finding the FM parameters for a given data set is
not easy. This is because there are no analytical formulas for a
derived measure dy in terms of FM parameters. As such, this
to derived measures dy1 and dy2, via fractal wires f1 (in black) and f2 (in gray). dy is

http://puente.lawr.ucdavis.edu/omake/jhydro2016/jhydro2016.html
http://puente.lawr.ucdavis.edu/omake/jhydro2016/jhydro2016.html


Fig. 4. Closing the loop using two FM leaves: from an input measure dx to output measures dy1 and dy2, via fractal leaves (in black and in gray). dy is found weighing dy1 and
dy2 and dys is a smoothed version of dy.
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requires a search method over a higher-dimensional space, up to
14 coordinates, in order to find a numerical solution to an inverse
problem. It turns out that searches are sensitive not only to the def-
inition of a suitable objective function but also to the usage of a
particular optimization algorithm. As a consequence, and based
on our past experience, we herein employ a generalized particle
swarm optimization algorithm (GPSO) (Fernández Martínez et al.,
2010; Huang et al., 2013) to minimize the L2–norm of the differ-
ences between the accumulated streamflow records (given, and
normalized to add up to one) and the accumulated FM sets:

RMSEAS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼0
ðri � briÞ2;

r
ð12Þ

where N is the number of data points (365 or 366 days depending
upon the year considered), and ri and r̂i are, respectively, the ith
accumulated values of the observed records and of the FM set. In
addition, and in order to ensure that FM ‘‘solutions” share similar
geometrical features with the target set, various penalties are also
imposed on the optimization exercise, such that the maximum
cumulative deviations (MAXEAS) between records and FM sets
would not exceed 10% and such that the length (over two dimen-
sions) of an FM set would not exceed 10% of the length of the orig-
inal records.

In the remainder of the article, the goodness of the alternative
FM approaches is quantified in terms of various statistical attri-
butes beyond those used in the optimization process. These attri-
butes help further compare differences between the observed
records (i.e., the data) and the FM-fits and include: (a) the afore-
mentioned maximum deviations on accumulated sets; (b) scatter
plots between data and FM-fitted sets; and (c) the Nash-Sutcliffe
efficiency indices associated with the data records (NSD), its his-
togram (NSH), its autocorrelation function (NSA), and its Rényi
entropy function (NSE), as given in their most general from by
(Nash and Sutcliffe, 1970),

NSI ¼ 1�
PS

i¼1ðsi � ŝiÞ2PS
i¼1ðsi � �sÞ2

ð13Þ

where si is the ith statistical value associated with the observed set, �s
is the mean of such a statistic over a total of S values, and ŝi is the ith
statistical value obtained from the FM fit. For the records, histogram,
autocorrelation function, and entropy function, the total number of
statistical attributes S is, in order, 365 or 366, 10 (number of bins), 91
(number of lags equal to a quarter of the size of the records), and 101
(for equally-sized exponents varying from �5 to 5).
4. Comparision of distinct FM streamflow encodings

This section includes a comparison of the various FM
approaches introduced earlier in Section 2, when using the search
methodology and statistical analysis presented in Section 3. For
this purpose, six interesting and distinct sets of daily streamflow
records from the Sacramento River near Freeport (out of the
65 years of data considered in this study), California (USGS station
11447650) and each spanning a water year (from October 1st to
September 30th) are analyzed in detail: 1958, 1968, 1975, 1984,
1998 and 2008, with the numbers indicating the ending year. As
the raw data are not fully amenable for encoding via a FM variant
due to elevated values, a constant base flow (groundwater compo-
nent) is subtracted from each of them (possibly not equal) and then
the data sets are normalized so that the accumulated volume
becomes unity.

For each of the six sets to be illustrated herein, encodings via six
specific FM representations are found. Such include derived mea-
sures obtained from the aforementioned variants of the fractal-
multifractal methodology, as follows: (a) two obtained from
‘‘wires” calculated via two and three affine maps (Section 2.1), (b)
two found from ‘‘leaves” based on two and three affine maps (Sec-
tion 2.2), and (c) two defined ‘‘closing a loop” using either twowires
or two leaves and defined via two affine maps each (Section 2.3).
Table 1 lists some basic details of these six FM representations.
The representations are denoted as A to F, for the sake of brevity
and convenience in the presentation of the results. Table 1 shows
that while the number of parameters of these six representations
varies from 5 to 13, the corresponding compression ratios span
from a ‘‘high” 73:1 to a ‘‘low” 28:1. Notice that the local smoothing
used on a given derived set dy, in order to define an output measure
dys to approximate a given streamflow set, is not included in the
table, for such is kept constant in all sets at a value of 5 days.



Table 1
Information about the different FM representations.

Approach Fit Number of
maps

Number of
parameters

Compression
ratio

Fractal wire A 2 5 73:1
B 3 9 41:1

Fractal leaf C 2 7 52:1
D 3 13 28:1

Loop of wire E 4 9 41:1
Loop of leaf F 4 12 30:1

Fig. 5. Daily streamflow records at the Sacramento River for water year 1958 (black
autocorrelation functions, and histograms. A and B are defined via ‘‘wires” corresponding
maps. E closes a loop of wires each using two maps and F combines two leaves found v
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The results that follow correspond to the ‘‘best” FM encodings.
It is important to note that these ‘‘best” encodings are not identi-
fied from the best attribute optimized plus constraints, i.e., the root
mean square error of accumulated streamflow (RMSEAS) subject to
penalties (Section 3). Rather, they are identified from the least
maximum error in accumulated streamflow (MAXEAS), as found
over all the swarms calculated and guided by RMSEAS: i.e., 300
randomly defined swarms, each iterated for a total of 40 cycles.
Results from the best RMSEAS, which after a few swarm iterations
always meet the proposed constraints, are qualitatively similar,
even if they typically correspond to distinct FM parameter values.
The results herein, inspired by the usage of MAXEAS in
) and six FM representations A to F (gray), followed by their accumulated sets,
to two and three maps. C and D are obtained from ‘‘leaves” based on two and three
ia two maps each.



Fig. 6. Daily streamflow records at the Sacramento River for water year 1968 (black) and six FM representations A to F (gray), followed by their accumulated sets,
autocorrelation functions, and histograms. A and B are defined via ‘‘wires” corresponding to two and three maps. C and D are obtained from ‘‘leaves” based on two and three
maps. E closes a loop of wires each using two maps and F combines two leaves found via two maps each.
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Kolmogorov-Smirnoff tests for assessing differences between two
distributions, turn out to demonstrate the goodness of some FM
representations over the others.

Figs. 5–10 illustrate the results obtained for the six water years
considered here, once again: 1958, 1968, 1975, 1984, 1998, and
2008. In these figures, the observed data are plotted in black and
the best FM fits in gray. Each of these six figures contain six rows,
one for each of the FM procedures (A to F), and include the follow-
ing information (in columns), in order: (a) the observed streamflow
data and the best FM fit as a function of time (i.e., Q vs. t); (b) the
subsequent accumulated sets themselves (i.e., AQ vs. t); (c) the
autocorrelation functions for the data and the best FM fit (i.e., q
vs. s); and, for variety, (d) either the corresponding histograms
per bin (i.e., PQ vs. b) (Figs. 5 and 6), the scatter plot between the
data and the FM fit (Figs. 7 and 8), or the implied Rényi entropy
functions (i.e., H vs. q) (Figs. 9 and 10). Tables 2–7 present a sum-
mary of a host of statistical qualifiers corresponding to each of the
figures; see below for details. The relevant FM parameters associ-
ated with all the figures are included in Appendix A.

Fig. 5 depicts the six FM representations for the streamflow data
for water year 1958. As seen on the first column, such a year con-
tains three major peaks that build up over periods of about a
month, with most of the mass distributed within the center of this
time span. As observed, the distinct FM representations are capable



Fig. 7. Daily streamflow records at the Sacramento River for water year 1975 (black) and six FM representations A to F (gray), followed by their accumulated sets,
autocorrelation functions, and scatter plot. A and B are defined via ‘‘wires” corresponding to two and three maps. C and D are obtained from ‘‘leaves” based on two and three
maps. E closes a loop of wires each using two maps and F combines two leaves found via two maps each.
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of representing those peaks with varying success, including model
E that corresponds to the construction shown in Fig. 3. As may be
appreciated from the second column of the figure, the modeled
accumulated fits for all FM variants (in gray) are rather close to
the observed set (in black), indicating that the optimization algo-
rithm does yield suitable solutions. Although, to the naked eye,
there appear to be no major differences among the distinct FM sets,
the variants plotted for the data itself (first column) show clear dif-
ferences. While all representations do capture the overall shape of
the hydrograph, the ones labeled D and E turn out to be quite
remarkable, as they also preserve the overall rising and falling
around the peaks. Models A, B, and C are clearly smoother than
the records, while fit F is too erratic. The nature of these encodings
may be further appreciated in the last two columns of Fig. 5 that
compare the autocorrelation functions and histograms of all FM
variants with those of the records. As seen, model D, coming from
the projection of a leaf defined via three maps, preserves the auto-
correlation function almost precisely and also the histogram rather
very well. The other four variants also capture the variability and
properties of the streamflow data reasonably well.

Table 2 includes various statistical attributes associated with
Fig. 5 that qualify the trends seen in the analysis. First, all FM vari-
ants have rather low values for the root mean square in accumu-
lated streamflow (RMSEAS) and maximum error in accumulated



Fig. 8. Daily streamflow records at the Sacramento River for water year 1984 (black) and six FM representations A to F (gray), followed by their accumulated sets,
autocorrelation functions, and scatter plot. A and B are defined via ‘‘wires” corresponding to two and three maps. C and D are obtained from ‘‘leaves” based on two and three
maps. E closes a loop of wires each using two maps and F combines two leaves found via two maps each.
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streamflow (MAXEAS), with numbers that are always less than 1.0
and 1.9%, respectively. Second, all representations have high Nash-
Sutcliffe statistics for all attributes considered: data (NSD), auto-
correlation (NSA), histogram (NSH), and entropy (NSE), as obtained
values are always higher than, in order, 77.5, 93.3, 87.0, and 98.9%.
Notice that while FM fit D is confirmed as the best, with remark-
able Nash-Sutcliff values for the aforementioned attributes of
91.4, 99.7, 95.9, and 99.9%, the other variants, with the exception
of model F, also provide rather reasonable results, as these num-
bers are always larger than 87.6, 93.3, 87.0, and 98.9%. Table 2 also
includes information regarding the actual timing of records when
compared to FM fits via deviations from a 45-degree line on a
scatter plot having scales from zero to one, i.e., as the sets appear
on the first column of Fig. 5. As such, the number of data vs. FM
fit points landing outside the 20% (±10%) bands relative to the line
of perfection (PO10) and the ones found outside a wider 40% (±20%)
bands (PO20) corroborate the goodness of the FM fit labeled as
D – having a mere 3.6% of the records outside the wide band –
and with all others (except fit F) following at values less than 7.9%.

Fig. 6 illustrates the FM encodings obtained for streamflow from
water year 1968, which has a geometry dominated by a single
peak. As seen, all FM variants, including the one labeled A which
is associated with the construction in Fig. 1, closely follow the
accumulated records and all of them yield fitted sets that, unlike



Fig. 9. Daily streamflow records at the Sacramento River for water year 1998 (black) and six FM representations A to F (gray), followed by their accumulated sets,
autocorrelation functions, and Rényi entropy functions. A and B are defined via ‘‘wires” corresponding to two and three maps. C and D are obtained from ‘‘leaves” based on
two and three maps. E closes a loop of wires each using two maps and F combines two leaves found via two maps each.
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the previously seen results in Fig. 5 for water year 1958, closely
approximate the salient features of the data set, including the tim-
ing and duration of the single peak. All the FM variants also turn
out to give representations that closely follow the autocorrelation
and histogram of the records. These general observations may also
be ascertained by the statistical information presented in Table 3:
(a) all fits have RMSEAS and MAXEAS values that are less than 1
and 2.4%, respectively, (b) all Nash-Sutcliffe efficiency values are
rather high and comparable across the FM fits, and (c) the number
of points outside of scatter plot bounds are similar and rather
small. Although the results indicate that any of the six FM variants
used here may be suitable to approximate the streamflow in water
year 1968, it is worthy to highlight that case D, defined as the pro-
jection from a leaf generated via three maps, performs the best or
close to the best in all the statistical attributes, similar to what was
found earlier for water year 1958 (Fig. 5).

Fig. 7 shows the six alternative FMfits found for streamflow from
wateryear1975,whichcontains twomainpeaks that comeandgo in
a sharper way than those already seen for year 1958 (Fig. 5). As the
graphson the second column indicate, the optimizationprocess pro-
duces, once again, suitable FM representations, whose RMSEAS and
MAXEASvalues are all below1.3 and2.9%, respectively (see Table 4).
When the time series (first column) is examined, however, it is
seen that there are some FM representations that are clearly better



Fig. 10. Daily streamflow records at the Sacramento River for water year 2008 (black) and six FM representations A to F (gray), followed by their accumulated sets,
autocorrelation functions, and Rényi entropy functions. A and B are defined via ‘‘wires” corresponding to two and three maps. C and D are obtained from ‘‘leaves” based on
two and three maps. E closes a loop of wires each using two maps and F combines two leaves found via two maps each.

Table 2
Error statistics related to Fig. 5.

Fit RMSEAS (%) MAXEAS (%) NSD (%) NSA (%) NSH (%) NSE (%) PO10 PO20

A 1.0 1.8 87.6 95.5 91.9 99.3 27.9 7.1
B 0.8 1.8 87.8 94.8 87.3 98.9 26.8 7.9
C 0.9 1.9 87.8 93.3 87.0 99.2 27.9 7.9
D 0.5 1.1 91.4 99.7 95.9 99.9 17.3 3.6
E 0.8 1.5 89.2 96.7 91.6 99.6 26.3 6.0
F 0.7 1.4 77.5 97.9 89.6 99.6 33.2 12.3
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Table 3
Error statistics related to Fig. 6.

Fit RMSEAS (%) MAXEAS (%) NSD (%) NSA (%) NSH (%) NSE (%) PO10 PO20

A 1.0 2.4 84.5 96.8 98.7 100.0 12.3 3.0
B 0.5 1.3 89.4 98.9 97.1 99.9 10.7 1.6
C 0.9 2.2 84.6 98.2 99.2 99.7 9.8 1.9
D 0.4 1.2 88.9 99.2 98.5 100.0 10.1 0.3
E 0.5 1.5 88.9 98.7 98.7 100.0 8.2 0.8
F 0.5 1.3 85.9 99.0 99.7 99.8 9.0 1.4

Table 4
Error statistics related to Fig. 7.

Fit RMSEAS (%) MAXEAS (%) NSD (%) NSA (%) NSH (%) NSE (%) PO10 PO20

A 1.3 2.9 64.6 85.9 96.2 97.2 36.4 15.1
B 0.7 2.1 80.9 89.9 94.9 97.9 20.5 4.7
C 1.0 2.6 71.6 91.5 97.9 98.2 14.8 1.9
D 0.8 2.0 88.4 98.4 95.0 99.9 15.6 2.7
E 0.7 1.8 85.2 91.8 98.7 99.3 17.0 2.7
F 0.5 1.4 85.3 96.3 90.4 99.6 8.5 2.2

Table 5
Error statistics related to Fig. 8.

Fit RMSEAS (%) MAXEAS (%) NSD (%) NSA (%) NSH (%) NSE (%) PO10 PO20

A 1.2 2.3 79.0 98.7 94.2 99.7 36.3 6.8
B 0.5 1.6 90.0 97.8 94.2 99.6 14.2 3.0
C 1.0 2.1 81.0 99.4 97.2 98.8 27.6 6.3
D 0.5 1.2 91.8 99.4 98.5 99.9 10.4 2.2
E 0.6 1.3 92.8 99.3 96.2 99.4 10.1 1.6
F 0.5 1.2 88.5 99.6 95.7 99.8 11.4 2.5

Table 6
Error statistics related to Fig. 9.

Fit RMSEAS (%) MAXEAS (%) NSD (%) NSA (%) NSH (%) NSE (%) PO10 PO20

A 1.0 2.2 85.0 97.6 22.7 99.8 35.6 6.0
B 0.5 1.1 89.9 99.0 83.6 99.4 22.2 3.0
C 0.7 1.5 82.3 98.9 65.2 99.9 29.0 10.6
D 0.5 1.1 93.6 99.8 79.4 99.9 15.3 0.0
E 0.5 1.2 81.4 98.8 80.6 99.6 22.7 6.0
F 0.5 1.2 90.3 98.5 73.6 99.7 23.0 3.6

Table 7
Error statistics related to Fig. 10.

Fit RMSEAS (%) MAXEAS (%) NSD (%) NSA (%) NSH (%) NSE (%) PO10 PO20

A 1.2 3.0 68.1 90.6 87.8 92.7 25.1 7.1
B 0.6 1.7 77.4 95.6 80.6 97.5 17.8 5.7
C 1.0 2.3 64.5 85.2 92.5 93.2 23.2 7.7
D 0.5 1.6 80.0 90.5 97.0 96.3 15.8 5.2
E 0.7 1.5 79.2 97.4 94.4 99.4 9.6 4.4
F 0.6 1.5 77.7 94.2 86.6 98.3 16.4 3.8

M.L. Maskey et al. / Journal of Hydrology 542 (2016) 564–580 575
than the others. For example, fits D, E, and F do look better than the
other three. This is also reflected by the rather high values of NSD of,
in order, 88.4, 85.2, and 85.3%. The last two columns of this figure
include the autocorrelation functions and the scatter plots for all
the fits. As seen, the better fitting of records results in better fittings
of autocorrelations, and, in this regard, the same aforementioned
model D and also the closed loop F produce excellent followings of
the decay of the undulating function, corresponding to remarkable
NSA values of 98.4 and 96.3%, respectively (Table 4). As observed,
the scatter plots, with the ±10% bands superimposed and defined
by the largest scale of the data or fits, yield rather similar results
for themodels D to F, with statistics PO10 and PO20 that are less than
17.0 and 2.7%, respectively. Just as the case for the previous years
(1958 and 1968), all the six FM representations turn out to be rea-
sonable, even if there is a noticeable overestimation of the second
peak by variants labeled C and F. As seen in Table 4, all the models
also approximate the histograms and the entropies rather well.

Continuing with the passage of time while recognizing the vari-
ability of observed streamflow, Fig. 8 presents the results for water
year 1984 that concentrates its bulky mass at the beginning of the
time period. As seen in the accumulated sets (second column) and
as corroborated by the first two columns in Table 5, once again all
the six FM models result in excellent fittings of the accumulated
records, with RMSEAS and MAXEAS values less than 1.2 and 2.3%,
respectively. Regarding the FM fits themselves (first column), a
visual inspection reveals that those labeled B, D, and E are best,
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which correspond to rather high NSD values of, in order, 90.0, 91.8,
and 92.8% (see Table 5). While all FM models track closely the
slowly decaying autocorrelation function (third column), i.e., NSA
greater than 97.8% (Table 5), the scatter plots (fourth column) just
reflect the visual quality of the fits, with the aforementioned B, D,
and E again being best, as corroborated by the PO10 and PO20 values
in Table 5.

Finally, and to conclude the analysis with yet distinct geome-
tries, the goodness of the FM fits of streamflow for water years
1998 and 2008 is presented, respectively, in Figs. 9 and 10, with
Fig. 11. Measured streamflow (in thousand cubic fit per second) gathered in the S
representations (bottom and found year by year) based on a fractal leaf representation

Fig. 12. Evolution of FM related statistics associa
the corresponding statistical information given in Tables 6 and 7.
While streamflow in the water year 1998 remains close to zero
for about three months and then abruptly rises to a high level for
about six months (Fig. 9, first column), water year 2008 contains
three distinct and sharp peaks in streamflow that happen during
the first six months (Fig. 10, first column). This leads to markedly
different accumulated records that, as has happened all along for
the other four water years considered earlier, are very well repro-
duced by the FM approaches (see the first two columns of Tables 6
and 7 and notice that representations C and F in Fig. 10 correspond
acramento River from water year 1951 until 2015 (top) and corresponding FM
employing three maps.

ted with Fig. 11: RMSEAS, MAXEAS and NSD.
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to the constructions shown in Figs. 2 and 4, respectively). While
the FM fits themselves for streamflow in the year 1998 appear to
the eye to be reasonably good across the board (with NSD values
exceeding a robust 81.4%, see Table 6), those for the more complex
streamflow in the year 2008 have varying degrees of success.
Although the best model all along, the one labeled D, remains
the best in NSD at a value of 80.0 (Table 7), Fig. 10 also reveals that
such a model does not capture, as well, the wavy nature of the
autocorrelation function and that models B and E clearly perform
better. As found for the other four water years above, and as illus-
trated in the last column of Figs. 9 and 10 and the attribute NSE in
Tables 6 and 7, all the six FMmodels are capable of maintaining the
Rényi entropy function of the records very well. As may be verified,
Tables 6 and 7 do corroborate the goodness of the fits in terms of
scatter and histogram information. However, a rather low value
for NSH (Table 6) for the simplest model A and also, to a lesser
Fig. 13. Evolution of FM parameters for the representation based on a ‘‘leaf” and three m
fromwater year 1951 till 2015. Shown yi values are normalized from 0 to 1, but correspon
but correspond to actual values between �1 and 1. The quantities Q and b, below, corresp
and thousand cubic feet per second, respectively. C2 to C5 are the second to fifth norma
extent, for model C, reveals that such representations may not be
suitable for streamflow from water year 1998, despite being rea-
sonable in all other attributes. This result is certainly interesting,
as it suggests that the used objective function may require yet an
additional constraint in order to find even better FM solutions.

In summary, it may be argued that although all the six stream-
flow records illustrated herein require FM representations based
on three or four maps for their encoding, attractors based on two
maps may also be sufficient, in some cases, to represent the
streamflow records. As has been illustrated, the goodness of a vari-
ant of the FM approach not only depends on the number of maps
but also on the inherent complexity of the records being encoded.
Even though closing the loops using ‘‘wires” or ‘‘leaves” requires a
higher number of maps, the results they produce are, at the end,
similar to those found from FM approaches based on three maps.
In this regard, it may also be noted that leafy attractors with three
aps over 65 years of streamflow records gathered in the Sacramento River, starting
d to actual values between �5 and 5. Shown di vales are also normalized from 0 to 1,
ond to the total flow and the baseflow during a year, in million cubic feet per second
lized principal components associated with Q.
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maps require just one more parameter than the closed loop using
two leaves and four maps, but such representations have similar
levels of quality.

Given the fact that different variants of the FM approach, using
either the original FM formulation or generalized approaches
based on overlaps on the inherent maps and also with or without
loops, produce similar results, it is clear that there are also different
ways in which a given set of records may be approximated. As
illustrated in Figs. 5–10, only the original FM approach based on
the iteration of two maps may be considered to perform consis-
tently worse than the other five representations. On the other
hand, overall, the usage of the leafy attractor based on three maps
(case D in the figures and tables) may be considered the best, as it
exhibits better performance in at least four major statistical qual-
ifiers when compared to the other representations.

As mentioned before, the results presented here are chosen
according to minimum values of maximum deviations in accumu-
lated sets, MAXEAS. As such, there are several other ‘‘solutions”
that have slightly lesser RMSEAS, which guided the optimization
exercise. This fact further corroborates that the inverse problem,
as it provides an approximation, does not give a unique solution,
as it is usually the case in other disciplines (Hill and Tiedeman,
2007).
5. Encoding the Sacramento River over 65 years

Having illustrated the goodness of the FM model based on three
maps generating a leafy attractor (i.e., Model D), this section
includes results for streamflow encodings at the Sacramento River
for the entire period of 65 years considered in this study, i.e., water
years spanning 1951 to 2015. Fig. 11 compares the raw data with
the obtained FM representations properly scaled, that is, adding a
constant base flow over the year and upscaling by the total volume
during the year. As seen, the overall encoding by FM model D is
remarkable, as it follows the records in great detail. Similarly to
what was reported in the previous section, such a geometric model
is found to be consistently the best of the six variants and the cor-
responding RMSEAS, MAXEAS, and NSD values over the 65 years, as
seen in Fig. 12, yield (with few exceptions on NSD) excellent per-
formance, with averages plus or minus one standard deviation of,
in order, 0.6 ± 0.1, 1.4 ± 0.3 and 81 ± 12.3%.

Fig. 13 shows the evolution of the key parameters of the FM
encodings based on 14 geometric parameters, and also includes,
after the weights used in the iterations p1 and p2, the total flow
Q and the baseflow b for each one of the years and, further down
in the last row, the second to fifth normalized principal compo-
nents for the total flows (as the first principal component follows
closely the set Q). As readily seen, all FM parameters do exhibit a
substantial amount of variation, akin of the one observed in the
records themselves and in the principal components. When duly
analyzed, all sets have correlations that decay rather rapidly and
all of them share similar small scales – as defined by the first lag
where correlation crosses zero – that are less than 2 years, and
with autocorrelation functions that are always bounded by ±0.2
bands. While the shown principal components are orthogonal
and hence have zero cross-correlations, the FM parameters turn
out to have also rather insignificant cross-correlations (less than
0.1), except between: p1 and p2 (0.53), x3 and y2 (�0.40), x2 and
x3 (0.38), and x1 and p1 (0.36).

Certainly, and surely at a first glance, Fig. 13 does not show any
obvious trends in FM parameters that may define nonstationarity
in the mean for any of the graphs, but rather reflects ample vari-
ability and perhaps statistical stationarity altogether. Although
the length of the sets limits what may be argued, the FM
parameters for this specific example turn out to have similar
degrees of complexity as the annual records, base flows and prin-
cipal components. Even though this fact is a clear reflection of
the intrinsic variability of the natural processes at the annual scale,
it should not be forgotten, however, that the FM parameters do
allow visualizing the dynamics of the streamflow process year by
year at the daily scale.

In an attempt to better understand relevant scale issues, a more
complete analysis of FM parameter patterns for additional sites is
being carried (the John Day River in Oregon, the Green River in
Washington, the Mississippi River at various stations and at the
Red River of the North), and also employing locally averaged
streamflow sets every 5, 10 and 15 years. Certainly, the use of local
averages – as done in climatic studies – results in successive
annual sets at the daily scale that do look alike, which hence yields
FM parameters that exhibit less variability than the ones in Fig. 13.
It is envisioned that the structure in these parameter evolutions, or
lack thereof, would be of relevance to compare and define the com-
plexity of distinct sets at various sites and to assess if there are any
trends in time, at different averaging scales, that may be related to
climate change attributes or other effects such as the one produced
by the construction of dams. Results of these analyses will be
reported elsewhere.
6. Concluding remarks

This study has presented an application of a fractal-multifractal
(FM) approach and some of its variants for encoding, for the first
time, daily streamflow data observed in the Sacramento River in
California, USA. The results indicate the appropriateness of all the
six FM models considered in the study for encoding the daily
streamflow geometrically and without the need for other physical
(hydrological) information. The study clearly demonstrates how
the notions that encompass the FM approach (i.e., projections of
measures defined over fractal attractors) could be employed as a
suitable tool to describe (encode) streamflow and other geophysi-
cal records that are complex and ‘seemingly random’ in nature. As
illustrated herein, and elsewhere for rainfall sets (Maskey et al.,
2015), such a geometric procedure could supplement and comple-
ment many of the existing stochastic procedures that aim at the
modeling of complex sets. Certainly, the notions add to the idea
that hidden determinism may be at the root of natural complexity
(Puente, 1996; Puente and Sivakumar, 2007), as the study also sug-
gests that understanding the dynamics of river flows may be
attempted in a novel manner, by following the evolution of the
FM parameters, as illustrated for one FM representation over
65 years of streamflow records.

In regards to the encoding of streamflow records, we have
demonstrated not only the capability of the original and general-
ized FM approaches, based on the iteration of maps without or
with overlaps (i.e. ‘‘wires” and ‘‘leaves”) but also the goodness of
‘‘closing the loop” notions that combine various attractors while
sharing a common (multifractal) input measure. Given that the
FM methods have been found useful in the modeling of rather
complex rainfall patterns (Puente and Obregón, 1996; Cortis
et al., 2009, 2013; Huang et al., 2012, 2013; Maskey et al., 2015),
it is not surprising that the same notions would do very well with
the generally less-complex streamflow sets. This work, however,
shows, for the first time, that streamflow records may indeed be
thought of as transformations of multifractal measures via fractal
attractors, in a manner that possesses a physical interpretation as
a special outcome of a non-trivial multiplicative cascade (Cortis
et al., 2013). Certainly, and as presented in Table 1, the extensions
of the original FM approach require a higher number of
parameters, but the additional flexibility gained is noteworthy in
capturing more details (and not just statistical information about
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the records), while yielding still substantial compression ratios
(28:1 at the daily scale for a ‘‘leaf” based on three maps). As
streamflow are not measured without error (Hammel et al.,
2006), the results shown here properly fit within the expected
bands of streamflow measurement uncertainty.

As mentioned in the previous section, the FM method is cur-
rently being applied to various streamflow sets and employing
local averages of the data that span 5, 10 and 15 years. Such stud-
ies, to be published elsewhere, shall include a more detailed
assessment and comparison of the evolution of FM parameters
using detrending techniques, including the fact that the FM
approach is equifinal, as there are various distinct parameter sets
that yield rather similar encodings. An examination of the FM
parameter trends for long periods of streamflow records, with pos-
sible linkages to streamflow dynamics and climatic changes via
plausible correlations of FM parameters and climatic attributes,
is certainly a natural extension to the present study. We also envi-
sion that joint FM codings of rainfall (Maskey et al., 2015) and
streamflow records (as done here), and within the same
Figure x1 y1

5A 0.068 �2.068
6A 0.659 �0.847
7A 0.723 �1.160
8A 0.623 �0.012
9A 0.277 �0.032
10A 0.890 2.287

FM parameters from ‘‘wires” and three maps.

Figure x1 x2 y1 y2

5B 0.348 0.931 �3.147 �0.819
6B 0.073 0.773 �0.288 �1.334
7B 0.133 0.764 0.525 �0.954
8B 0.209 0.663 �2.120 4.637
9B 0.529 0.997 1.645 5.000
10B 0.412 0.774 2.178 �1.182

FM parameters from ‘‘leaves” and two maps.

Figure x1 x2 y1

5C 0.825 0.111 1.897
6C 0.458 0.395 3.453
7C 0.577 0.525 �0.535
8C 0.463 0.078 1.020
9C 0.529 0.483 0.900
10C 0.698 0.688 4.455

FM parameters from ‘‘leaves” and three maps.

Figure x1 x2 x3 x4 y1 y2 y3

5D 0.134 0.680 0.887 0.025 �2.218 2.093 5.0
6D 0.452 0.762 1.000 0.420 �1.839 �3.659 4.9
7D 0.750 0.352 0.755 0.930 �2.870 �1.385 �1
8D 0.499 0.533 0.944 0.109 4.645 �1.291 0.7
9D 0.543 0.732 0.995 0.576 2.383 1.185 0.1
10D 0.573 0.601 0.823 0.868 4.755 �0.122 0.1
catchment, may help define, via the intrinsic complexity of FM evo-
lutions of rainfall and runoff, distinct climatic/geomorphic regimes.
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Appendix A

Parameters for all FM representation in Figs. 5–10.
FM parameters from ‘‘wires” and two maps.
d1 d2 p

0.703 �0.671 0.440
�0.465 0.333 0.559
�0.647 0.410 0.547
0.943 �0.549 0.868
�1.000 �0.714 0.444
�0.646 �0.509 0.596

d1 d2 d3 p1 p2

1.000 0.961 0.000 0.694 0.128
0.577 �0.468 0.283 0.124 0.628
�0.581 �0.394 0.599 0.441 0.406
0.397 �0.937 0.692 0.356 0.518
0.865 0.098 0.406 0.660 0.308
�0.519 �0.353 0.726 0.374 0.389

y2 d1 d2 p

3.475 0.668 0.560 0.214
1.422 �0.175 0.169 0.458
�2.172 0.291 0.237 0.510
�4.408 �0.965 0.527 0.190
2.908 0.735 0.002 0.418
1.467 �0.614 �0.566 0.564

y4 d1 d2 d3 p1 p2

00 4.563 0.893 0.259 �1.000 0.453 0.294
93 0.261 �0.445 0.078 0.289 0.511 0.286
.316 �1.251 �0.510 �0.080 �0.671 0.562 0.115
81 �0.652 �0.507 0.482 0.385 0.418 0.168
85 0.896 �0.985 0.504 �0.695 0.318 0.547
35 �3.927 �0.649 �0.261 0.386 0.567 0.144



FM parameters from combining two ‘‘wires” found via two maps each.

Figure x1 y1 d1 d2 p ŷ1 d̂1 d̂2 w

5E 0.692 �4.952 �0.867 0.299 0.545 �3.326 �1.000 0.562 0.332
6E 0.660 �3.437 �0.762 �0.084 0.803 5.000 �0.041 0.256 0.759
7E 0.840 �1.275 0.263 0.168 0.659 �3.372 �0.516 �0.605 0.202
8E 0.380 0.875 0.966 �0.693 0.474 3.135 �0.075 �0.402 0.531
9E 0.757 4.993 �0.774 �0.372 0.780 4.440 �1.000 0.139 0.539
10E 0.538 3.983 �0.205 �0.305 0.513 1.591 0.456 0.290 0.771

FM parameters from combining two ‘‘leaves” found via two maps each.

Figure x1 x2 y1 y2 d1 d2 p ŷ1 ŷ2 d̂1 d̂2 w

5F 0.007 0.906 1.270 �0.508 0.142 0.782 0.214 0.858 1.005 0.850 �0.829 0.556
6F 0.530 0.475 1.161 �4.000 0.429 �0.130 0.610 0.620 4.956 �0.608 �0.692 0.565
7F 0.002 0.896 �2.077 �0.603 �0.169 0.890 0.545 �5.000 2.934 �0.455 �0.704 0.357
8F 0.544 0.322 �1.067 �0.773 0.079 �0.032 0.607 1.942 3.741 �0.604 �0.629 0.413
9F 0.817 0.550 �2.464 �4.061 0.078 0.039 0.623 �3.244 �1.393 �0.143 0.188 0.601
10F 0.705 0.487 5.000 0.649 �0.571 �0.436 0.448 4.680 4.239 �0.849 �0.343 0.554
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