
5. The deterministic
nature of chaos

Chaos, Complexity & Christianity

Carlos E. Puente
University of California, Davis



Summary
• Introduces the logistic map and its amazing dynamics.

• Explains how such a deterministic equation gives rise to
intertwined periodic and chaotic behaviors.

• Introduces the diagram of bifurcations or the Feigenbaum tree.

• Explains why the “butterfly effect” happens.

• Shows chaotic attractors in two and three dimensions.



The dynamics of the logistic map 
(May, 1976; Gleick, 1987; Schroeder, 1992; Turcotte, 1997) 



• Praised as one of the most important scientific achievements of the
twentieth century, together with relativity theory and quantum mechanics,
chaos theory provides useful and poignant symbols in relation to our peace.
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• The prototypical equation used to illustrate the well-established theory is
the simple logistic map:

where 𝑋𝑋 is the normalized size of a population (between 0 and 1), say of
rabbits, k and k+1 are two successive generations and 𝛼𝛼 is a parameter that
may be between 0 and 4, inclusive.

The logistic map
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• The prototypical equation used to illustrate the well-established theory is
the simple logistic map:

where 𝑋𝑋 is the normalized size of a population (between 0 and 1), say of
rabbits, k and k+1 are two successive generations and 𝛼𝛼 is a parameter that
may be between 0 and 4, inclusive.

• The quadratic equation defines, from a generation to the next, a symmetric
graph with the form of a parabola, one that passes by the points (0,0) and
(1,0) and whose peak, by the middle, is 𝛼𝛼/4:

The logistic map

𝑋𝑋𝑘𝑘+1 = 𝛼𝛼𝑋𝑋𝑘𝑘 1 − 𝑋𝑋𝑘𝑘



• The curve exhibits and increase from generation to generation if the
population is small, but a decrease if the population is large, which is logical.

𝑋𝑋 = 𝑌𝑌
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• The curve exhibits and increase from generation to generation if the
population is small, but a decrease if the population is large, which is logical.

• The straight line Y = X has been added to the figure to calculate the
evolution of a population that starts at a size 𝑋𝑋0: the next size is read from
the graph, and then such 𝑋𝑋1 is taken to the one-to-one line to read 𝑋𝑋2, etc.

𝑋𝑋 = 𝑌𝑌

The logistic map

𝑌𝑌 = 𝑋𝑋



• Here we observe the evolution of a population, reiterating the logistic
map, when the parameter takes on the value of 2.8.
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• Here we observe the evolution of a population, reiterating the logistic
map, when the parameter takes on the value of 2.8.

• As may be seen, the population converges to a value 𝑋𝑋∞ that is the non-
zero intersection between the straight line and the parabola, and this
“attractor” always happens provided that 𝑋𝑋0 is not 0 or 1.
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• Here we observe the evolution of a population, reiterating the logistic
map, when the parameter takes on the value of 2.8.

• As may be seen, the population converges to a value 𝑋𝑋∞ that is the non-
zero intersection between the straight line and the parabola, and this
“attractor” always happens provided that 𝑋𝑋0 is not 0 or 1.

• But this is not always the case, and what is obtained depends on 𝛼𝛼:

The logistic map

𝛼𝛼 = 2.8

𝑌𝑌 = 𝑋𝑋



The logistic dynamics
𝑌𝑌 = 𝑋𝑋

𝑋𝑋∞ = 0

0 < 𝛼𝛼 ≤ 1

• When the parabola is below the line, that is when 𝛼𝛼 is less than or equal to
1, the population becomes extinct and the origin attracts the dynamics for
every initial size 𝑋𝑋0.



The logistic dynamics

1 < 𝛼𝛼 ≤ 3

𝑋𝑋∞ = 𝛼𝛼−1
𝛼𝛼

• When the parabola is below the line, that is when 𝛼𝛼 is less than or equal to
1, the population becomes extinct and the origin attracts the dynamics for
every initial size 𝑋𝑋0.

• Now, when the curve “crosses the line” and 𝛼𝛼 is between 1 and 3, the
population converges to the non-zero intersection between the line and the
parabola, that is, to the “fixed point” given by the shown equation, alpha
minus one over alpha.

𝑋𝑋∞ = 0

0 < 𝛼𝛼 ≤ 1

𝑌𝑌 = 𝑋𝑋
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1 < 𝛼𝛼 ≤ 3

𝑋𝑋∞ = 𝛼𝛼−1
𝛼𝛼

• When the parabola is below the line, that is when 𝛼𝛼 is less than or equal to
1, the population becomes extinct and the origin attracts the dynamics for
every initial size 𝑋𝑋0.

• Now, when the curve “crosses the line” and 𝛼𝛼 is between 1 and 3, the
population converges to the non-zero intersection between the line and the
parabola, that is, to the “fixed point” given by the shown equation, alpha
minus one over alpha.

• When the parabola exceeds the line, the origin always repels. (!)

𝑋𝑋∞ = 0

0 < 𝛼𝛼 ≤ 1

𝑌𝑌 = 𝑋𝑋



The logistic dynamics

𝛼𝛼 = 3.2
period 2

• When 𝛼𝛼 is greater than 3, what happened to the origin occurs to the other
intersection between the line and the curve: such a location repels the
dynamics and there appear repetitions every two generations. (!)
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• When 𝛼𝛼 is greater than 3, what happened to the origin occurs to the other
intersection between the line and the curve: such a location repels the
dynamics and there appear repetitions every two generations. (!)

• If 𝛼𝛼 continues growing, such repetitions repel and there appear repetitions
every four generations. (!)
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𝛼𝛼 = 3.2
period 2

𝛼𝛼 = 3.46
period 4

• When 𝛼𝛼 is greater than 3, what happened to the origin occurs to the other
intersection between the line and the curve: such a location repels the
dynamics and there appear repetitions every two generations. (!)

• If 𝛼𝛼 continues growing, such repetitions repel and there appear repetitions
every four generations. (!)

• Surprisingly, there appears a “chain of bifurcations”: every power of 2
happens before 𝛼𝛼∞ ≈ 3.5699… (!)



𝛼𝛼 = 4
aperiodic
chaotic

𝛼𝛼 = 3.6
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strange

The logistic dynamics

• When 𝛼𝛼 > 𝛼𝛼∞, there appear infinite “strange” attractors exhibiting no
repetition, that is, like the expansion of irrational numbers, and they appear
as guided by chance, although they are given by a deterministic process. (!)
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• As is observed, such sets have the structure of dust and they define the
well-named behavior we call chaotic. (!)
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The logistic dynamics

• When 𝛼𝛼 > 𝛼𝛼∞, there appear infinite “strange” attractors exhibiting no
repetition, that is, like the expansion of irrational numbers, and they appear
as guided by chance, although they are given by a deterministic process. (!)

• As is observed, such sets have the structure of dust and they define the
well-named behavior we call chaotic. (!)

• When 𝛼𝛼 = 3.6 the attractor contains two separate zones, but when 𝛼𝛼 = 4
the set encompasses almost all the interval from 0 to 1, but with small little
holes as it is dusty.

𝑌𝑌 = 𝑋𝑋

𝛼𝛼 = 3.6
aperiodic
strange

𝛼𝛼 = 4
aperiodic
chaotic



𝛼𝛼 = 3.74
period 5

𝛼𝛼 = 3.83
period 3

The logistic dynamics

• When 𝛼𝛼 is greater than 𝛼𝛼∞, there appear also repetitive attractors whose
repetitions are not powers of 2: for 𝛼𝛼 = 3.83 there appear oscillations every
three generations and for 𝛼𝛼 = 3.74 there exist every five generations. (!)
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repetitions are not powers of 2: for 𝛼𝛼 = 3.83 there appear oscillations every
three generations and for 𝛼𝛼 = 3.74 there exist every five generations. (!)

• As if by magic, the curvatures of the parabolas synchronize and the
horizontal-vertical lines give rise to repetitions. (!)
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The logistic dynamics

• When 𝛼𝛼 is greater than 𝛼𝛼∞, there appear also repetitive attractors whose
repetitions are not powers of 2: for 𝛼𝛼 = 3.83 there appear oscillations every
three generations and for 𝛼𝛼 = 3.74 there exist every five generations. (!)

• As if by magic, the curvatures of the parabolas synchronize and the
horizontal-vertical lines give rise to repetitions. (!)

• In an admirable way, the logistic map defines oscillations that correspond
to any natural number. (!)

𝛼𝛼 = 3.83
period 3

𝛼𝛼 = 3.74
period 5



The diagram of bifurcations
(Feigenbaum, 1978; Maurer and Libchaber, 1979; Puente, 2011, 2019)
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The diagram of bifurcations
• 𝑋𝑋∞ as a function of 𝛼𝛼, for stable attractors, is known as the diagram of
bifurcations:

• Such has the shape of a tree if rotated 90 degrees counterclockwise.

• After 𝛼𝛼∞, the periodic and the chaotic intertwine, and the infinite strange
attractors are little dots in vertical lines.



The diagram of bifurcations
• The striking tail of the diagram is seen in more detail here:



The diagram of bifurcations
• The striking tail of the diagram is seen in more detail here:

• The “tree” contains “buds” in periodic “white bands” for any value greater
than 2, and the most notorious, from right to left, correspond to periods 3, 5
and 6. (!)



The diagram of bifurcations
• Amplifying the central bud of period 3 gives:



The diagram of bifurcations
• Al amplificar el brote central del período 3 resulta:

• This is a reduced copy of the foliage of the tree, without its straight root.



The diagram of bifurcations
• Al amplificar el brote central del período 3 resulta:

• This is a reduced copy of the foliage of the tree, without its straight root.

• As the bud contains little buds, the diagram exhibits an exquisite self-
similarity ad infinitum. (!)



⁄𝑑𝑑𝑛𝑛 𝑑𝑑𝑛𝑛+1 ⟶ ℱ1 = −2.50 …
openings

⁄Δ𝑛𝑛 Δ𝑛𝑛+1 ⟶ ℱ2 = 4.66 …
durations

The diagram of bifurcations
• There exist an order in this route towards chaos, for, as demonstrated by
Mitchell Feigenbaum in 1978, all the bifurcations happen according to two
universal constants:



⁄𝑑𝑑𝑛𝑛 𝑑𝑑𝑛𝑛+1 ⟶ ℱ1 = −2.50 …
openings
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durations

The diagram of bifurcations
• There exist an order in this route towards chaos, for, as demonstrated by
Mitchell Feigenbaum in 1978, all the bifurcations happen according to two
universal constants:

• The diagram of bifurcations is also known as the “Feigenbaum tree”, or
“the fig tree”, translating from German. (!)



The diagram of bifurcations
• The results are truly universal, as they happen for every curve that has a
single peak:

𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝛼𝛼 1 − 𝑋𝑋 3𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝛼𝛼 1 − 𝑋𝑋3
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single peak:

• As per Feigenbaum, these trees have a straight root, a “tender branch”,
and periodic branches intertwined with the dust of chaos.
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• The results are truly universal, as they happen for every curve that has a
single peak:

𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝛼𝛼 1 − 𝑋𝑋 3𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝛼𝛼 1 − 𝑋𝑋3

• As per Feigenbaum, these trees have a straight root, a “tender branch”,
and periodic branches intertwined with the dust of chaos.

• These last ones are hence symbolic “fig leaves”. (!)



The diagram of bifurcations
• The results are certainly important, for they are also relevant in physics,
chemistry, biology, economics, etc.
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The diagram of bifurcations
• The results are certainly important, for they are also relevant in physics,
chemistry, biology, economics, etc.

• The dynamics of convection occur as per Feigenbaum, when 𝛼𝛼 denotes the
heat added to a fluid. (!)
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The diagram of bifurcations
• The results are certainly important, for they are also relevant in physics,
chemistry, biology, economics, etc.

• The dynamics of convection occur as per Feigenbaum, when 𝛼𝛼 denotes the
heat added to a fluid. (!)

• This is so for liquid helium, mercury and water, as found first by Jens
Maurer and Albert Libchaber in 1979.

𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝛼𝛼 1 − 𝑋𝑋 3𝑓𝑓 𝑋𝑋 = 𝛼𝛼𝛼𝛼 1 − 𝑋𝑋3



The diagram of bifurcations
• The chaotic tree contains sets of multi-fractal thorns that combine
imbalances and holes as in the previous games related to the study of
turbulence. The first one occurs for the value of 𝛼𝛼∞:
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• The chaotic tree contains sets of multi-fractal thorns that combine
imbalances and holes as in the previous games related to the study of
turbulence. The first one occurs for the value of 𝛼𝛼∞:

• Such come from a histogram of the dynamics at such a value.



The diagram of bifurcations
• The chaotic tree contains sets of multi-fractal thorns that combine
imbalances and holes as in the previous games related to the study of
turbulence. The first one occurs for the value of 𝛼𝛼∞:

• Such come from a histogram of the dynamics at such a value.

• The tree is a thorn bush, as there are many spikes by the end of the white
bands of the tree, where the buds define Cantor dusts. (!)



Properties of chaos
(Moon, 1987; Peitgen et al., 1992)



The geometry of the strange
• The non-repetitive chaotic dynamics come from “kneading” all possible
states, stretching and folding the mass:

(Peitgen et al., 1992)
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The geometry of the strange
• The non-repetitive chaotic dynamics come from “kneading” all possible
states, stretching and folding the mass:

• What is close separates and then it comes close, but without repeating.

• For the logistic map when 𝛼𝛼 = 4 the two steps are:

stretching

folding

(Peitgen et al., 1992)
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• The chaotic dynamics are sensitive to where the process starts.
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when the process starts at 0.3001 one gets:



Sensitivity to 𝑿𝑿𝟎𝟎
• The chaotic dynamics are sensitive to where the process starts.

• While the orbit corresponding to 𝑋𝑋0 = 0.3 and 𝛼𝛼 = 4 is:

when the process starts at 0.3001 one gets:

• This is the “butterfly effect”, a divergence that prevents us to predict. 

1

0

𝑋𝑋𝑘𝑘

1 𝑘𝑘 10025 7550



The Lyapunov exponent
• While chaotic dynamics diverge, the periodic one converges.
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• This could be quantified studying the evolution of successive errors, using
the Lyapunov exponent, λ, whether it is positive for divergence or not:

𝜖𝜖 𝑛𝑛 = 2λ 𝑛𝑛 𝜖𝜖(0)
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The Lyapunov exponent
• While chaotic dynamics diverge, the periodic one converges.

• This could be quantified studying the evolution of successive errors, using
the Lyapunov exponent, λ, whether it is positive for divergence or not:

𝜖𝜖 𝑛𝑛 = 2λ 𝑛𝑛 𝜖𝜖(0)

• For the logistic map such gives: 

λ

𝛼𝛼

• The maximum value, λ = ln2, occurs at the highest heat when 𝛼𝛼 = 4. 



Attractors in 2D and 3D
(Lorenz, 1983; Moon, 1987)



The Hénon attractor
• If the coupled equations, 𝑥𝑥𝑘𝑘+1= 1 – 𝑎𝑎𝑥𝑥𝑘𝑘2 + 𝑦𝑦𝑘𝑘 and 𝑦𝑦𝑘𝑘+1= b 𝑥𝑥𝑘𝑘 with
parameters 𝑎𝑎 = 1.4 and b = 0.3, are used, there appears a strange attractor:



The Hénon attractor

• It looks like a napoleon cake with a Cantorian structure, and it has a fractal
dimension of 1.26. (!)

• If the coupled equations, 𝑥𝑥𝑘𝑘+1= 1 – 𝑎𝑎𝑥𝑥𝑘𝑘2 + 𝑦𝑦𝑘𝑘 and 𝑦𝑦𝑘𝑘+1= b 𝑥𝑥𝑘𝑘 with
parameters 𝑎𝑎 = 1.4 and b = 0.3, are used, there appears a strange attractor:



The Rössler attractor
• If now are employed three coupled equations, but not of differences but
differential, 𝑥̇𝑥 = −y − 𝑧𝑧, 𝑦̇𝑦 = 𝑥𝑥 + 𝑎𝑎𝑎𝑎 and 𝑧̇𝑧 = 𝑏𝑏 + 𝑧𝑧(𝑥𝑥 − 𝑐𝑐), with parameters
𝑎𝑎 = 0.2, 𝑏𝑏 = 0.2 and 𝑐𝑐 = 5.7, there appears a strange attractor in 3D:



The Rössler attractor
• If now are employed three coupled equations, but not of differences but
differential, 𝑥̇𝑥 = −y − 𝑧𝑧, 𝑦̇𝑦 = 𝑥𝑥 + 𝑎𝑎𝑎𝑎 and 𝑧̇𝑧 = 𝑏𝑏 + 𝑧𝑧(𝑥𝑥 − 𝑐𝑐), with parameters
𝑎𝑎 = 0.2, 𝑏𝑏 = 0.2 and 𝑐𝑐 = 5.7, there appears a strange attractor in 3D:

• This Cantorian object has the structure of a Möebius strip.



The Lorenz attractor
• The three equations, 𝑥̇𝑥 = 𝜎𝜎 y − 𝑧𝑧 , 𝑦̇𝑦 = 𝑥𝑥 𝜌𝜌 − 𝑧𝑧 − 𝑦𝑦 and 𝑧̇𝑧 = 𝑥𝑥𝑥𝑥 − 𝛽𝛽𝛽𝛽,
with parameters 𝜎𝜎= 10, 𝜌𝜌 = 28 and 𝛽𝛽= 8/3 generate:
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The Lorenz attractor
• The three equations, 𝑥̇𝑥 = 𝜎𝜎 y − 𝑧𝑧 , 𝑦̇𝑦 = 𝑥𝑥 𝜌𝜌 − 𝑧𝑧 − 𝑦𝑦 and 𝑧̇𝑧 = 𝑥𝑥𝑥𝑥 − 𝛽𝛽𝛽𝛽,
with parameters 𝜎𝜎= 10, 𝜌𝜌 = 28 and 𝛽𝛽= 8/3 generate:

• The object looks like a “butterfly” and its dimension is 2.06.  (!)

• These equations, used by Edward Lorenz to study climate, allowed him to
identify, for the first time in 1963, the butterfly effect of deterministic,
aperiodic strange attractors.



…Well, here ends this brief introduction.

In our next encounter we shall see, based on
these ideas, how we may comprehend that Jesus
is the narrow gate and the only way to the
Father.

Until next time…
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