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Abstract

A oew comstructhen of the Gaussian distribution s introduced and proven. The
procedure conusts of using fracial inlerpolabng functions, wath graphs having
increasing fractal dimendions, 1o transform arbitrary continuous probability measurss
defined over o clmed mierval Specifically, let X be any probabihty messure on the
closed interval I with a contimuous cumulative destnbution, And let iy, f— K be a
determanistic comtinuous fractal interpolating funcion, as inmroduced by Bamabey
{1485], will parnmeters B and racisl dimension o its graph (. Then, the denved
measitte ¥ = f, S X) 1ends to & Gewssian fof all parameters © such that D=2, for
all X, Thin result ilsactes that plane-fillmg dractal iniemoksing functions arc
“intrinsically Gauvssian”, It explams that chose apprommations to the Gaussian may be
obiamed transdormmg any comtinuods probabeliy measure wia g ungls nearly-plane
filling fracial infzrpolalor,

DETERMINISTIC  FRACTAL GEODMETRY; MULTIFRACTAL  MEASURES; FRACTAL
INTERFUILATING | USCTIONS, GALSSIAN DISTRISLTION

AME 1 SUNECT CLASSIFICATION PRIMARY 2EAr ZOALY 384 H
SECOMDARY #0RLY. aOCME PaFi]

L. Introduction

This work provides a new construction of the Gaussian distribution as a
deterministic transformaton of arbitrary diffuse probability measures (that is, with
continuous cumulative distribotion functions). The transformations used belong to
the family of deterministic continuous fractal interpolating functions, as intreduced
by Barnsley (1986), Specifically, it is shown that given # sel of non-aligned
interpolating points there exists & sequence of fractal functions f ., with parameters
© and fractal dimension [ for its praph, such that when 0 —2 they provide a
derived Gaussian for any diffuse parent measure. Moreover, it is shown that the
result holds for sequences based on all possible aliernative parametnizations of
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functions fap leading to the conclusion that plane-filling fractal interpolating
functions are ‘intninsically Gaussian’.

Given that the Gaussian distribution 15 uniguely characterized by all its moments
(see for example Billingsley (1986)), a proof of the result is given in terms of
properly standardized variables. It is illustrated that the new construction leads Lo an
orderly approximation of the Gaussian measure in the sense that accurate fittings of
high order moments (even or odd) automatically lead 10 even increased precisions
an low order moments (even or odd).

In addition to its mathematical relevance, the new construction may have physical
significance. This is for two reasons. The first is the increasing importance of fractal
peometry &s & ol Lo describe nature; see for example Mandelbrot (1962) and Kaye
{1929}, And the second is the fact that the result holds, in a natural way, for
measures that are increasingly pertinent in the study of turbulence: the family of
multinomial multifractal measures; see for example Menevesu and Sreenivasan
{1987), Mandelbrot (1989), and Sreenivasan (1991). Loosely speaking, the Gaussian
distribution appears transforming ‘turbulent’ measures via plane-filling fractal
functions. The Gaussian, then, could be interpreted as a ‘reflection’ of wrbulence:
and the plane-filling fractals provide the bridge between ‘disorder” and "harmony”.

The organization of this paper is as follows. First, a geometric introduction to the
theory of fractal interpoluting functions and multinomia! multfractal measures is
fiven, together with a brief explanation of the result shown in this work. Second, the
mathematics of fractal interpolation are fully reviewed, with general expressions
given for the fractal dimension D in terms of function parameters 8. Third, the main
theorems regarding the Gaussian limit are provem, concentrating on analytic
Tarmulas for the moments of the derived distnbutions, The result is proven first for a
uniform parent measure and then it is extended to arbitrary diffuse measures. A
discussion pertaining to the validity of the resulis via existing central limit theorems
is given next. The paper concludes with a summary and remarks.

2. The geometry of fractal transformations and multifractal measures

Consider the set of three data points (equally spaced in x) as illustrated in Figure
1(a). Fix a real number 0=z <1, draw lines between the points and locate 1wo
intermediate points going up and down the distance z from the mid-points of the
line segments, as shown in Figure 1(b). Continue the process by joining the newly
acquired points and the original ones, locating four additional intermediate points
(in the middle of the line segments) by going up, down, and down, up respectively 2
distance z°, as shown in Figure 1(c). Carry the process ad infinitum, adding a1 the
nth state 2° inlermediate points with vertical displacements of magnitude 2" Take
displacements at stage n those of stage n — 1 on the first half, and the reciprocal of
these on the second half. For instance, in the third stage use as wvertical
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Figare 1. Recunsive construction of fractal interpadating Functaen.

displacements: up, down, down, up, and down, up, up. down, as shown in Figure
L{d).

The sequence of piecewise lincar functions thus constructed converges to a
continuous function f,:[0, 1]— R, which, by virtue of its definition. perfectly
interpolates the original three data points. Figure 2 exhibits the limiting functions for
varving values of z. As shown in Figure 2(a), when 2 equals zero linear interpolation
between the points is oblained. As seen in Figures 2(b, ¢ and d), when z increases,
the resulting function maintains the same overall appearance but becomes increas-
ingly jageed. For z 205, f. may be shown Lo be differentiable almosl everywhere
with respect to the Lebesgue measure. But, as 1 increases heyond 0:5, f; loses its
differentiability, and its graph covers more and more space on the plane, leading lo
fractal (intermediate) dimensions, D, between 1 and 2; scc Barnsley (1986, 1988).
The resulting graphs are in all cases self-affine; if a restriction of any function f, over
any subinterval [(i —1)- 270§ 277"V i =1, . +, 2! at stage n is adequately
enlarged (with two distinct horizonial and vertical scales), then the whole function f
aver [0, 1] is recovered. All functions f;, even in the case when the fractal dimension
of its graph is one, are examples of so-called deserminixtic fractal interpolating
functions, as introduced by Barnsiey (1986, 1988).

As any function f, is recursively constructed, two probability measures are
naturally generated by counting the relative frequencies of the acquired peints in

\ . i '| ; \ ]
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Figurs 2. Examples of fracial nterpolators: (a] 2 =0, (5] ¢ = 00dS, () 2 =0T (d) z = D995
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Figare 3. Derived measurcs ¥ = f, (L) for the fracial interpolators in Figure 2.

the x and y coordinates. In x, a uniform measure is obtained. This is cesily seen by
observing that all the acquired points up lo stage n are the dyadic rarionals
j-270*0 j=0,1,---,2""" Due to the continuity of an interpolating function,
measures found in y may be interpreted as being derived from the uniform measure
in ¥ via f,, i.e. ¥ =f(U), with U dencting the uniform probability measure in [0,1]
and Y representing the derived measure in p that is, Y(B)=U(f;'(B))=
Ulx:f.(x) e B) for a Borel subser B, The vertical displacement parameter 2 dictates
the kind of measure that appears in v. Figure 3 shows the measures in y
corresponding 1o the cases reporied in Figure 2. As seen in Figure 3(a), when z = O a
uniform measure is also obtained in y, us expected. As 2 is increased, Figures 3(b. ¢
and d) show that non-uniform derived measures of varying shapes are obtained. As
z approaches 1, the graph of f; nearly fills up the plane and has a fractal dimension
close to 2. As seen in Figure 3(d), the obtained derived measure closely resembles a
Gaussian,

Notice that the domain of the measure in y, being the range of @ continuous
function defined over a closed interval, is finite when z < 1. Consequently, the graph
shown in Figure 3(d) is mor truly Gaussian. What will be shown first in this work is
that a derived Gaussian is obtained in y in the limit when z — L.

As mentioned in the introduction, multifractal measures are being increasingly
identified as relevant models of physical phenomena, especially in circumstances
related 1o turbulence. Such measures also appear in the classical problem of the
gambler’s ruin in relation to the strategy of bold play: see for example Dubins and
Savage (1968), Feller (1968), Billingsley (1%83) and Feder (1988). Despite their
intricate appearance, as seen on the bottom of Figure 5, they can be easily generated
using a recursive procedure. Figure 4 illustrates the construction of a multiplicative
binomial multifractal for the case of equal length scales. An originally uniform bar

S
07 _ +—— 93
=

rae,

Figure 4. Geometris construction of binomial multifractal mexsurs.
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is cut by & prespecified factor p, 0<p <1, Then, the first piece is piled-up and the
second stretched so that a stair with two steps of equal lengths and masses p and
(1= p) is obtained. The process is repeated at cach piece ad infinitum. At stage n of
:} segments of length ()" and mass p* - (1 = p)y*, for
k=0,1, --,m thus forming a ‘layered” measure. In the limit when n tends 1o
infinity, the number of layers also goes to infinity and the set of poinis that
corresponds to cach layer becomes a fracial subsel of the interval [0, 1] (like the
classical Cantor set). For this reason the measure obtained is termed multifracial;
see Mandelbrot (1989). Binomial multifractals with differemt length scales are
obtained if all mass redistributions are made over non-equal subintervals. When the
original mass is pariitioned into more than iwo pieces, general mulrplicative
multinomial mudiifractal measures are obtained. It will be shown later that these
measures appear in a very natural way when computing a fractal interpolator
following a Monte Carlo approach.

If arbitrary binomial multifractals, like the one constructed in Figure 4 for any
0<p <1, replace the uniform distribution in x, then the same overall patterns are
obtained. As illustrated in Figure 5, a binomial multifractal measure with p =07 is
transformed into an almost Gaussian in y, by employing the seme fractal
interpolating function f, (z =~0-995) as used to get an almost Geussian disinbution
from a uniform measure. As will be proven in this work, the resull is even more
general: the measure in x may be any diffuse probability measure. For z close to 1,
the same fractal interpolating function f, gives Gaussian-like derived distributions in
y for a very wide variety of parent measures in X.

It will alse be shown that the result holds for any alternative parametrization of
fractal interpolating functions, other than the exhibited f,, as introduced by Barnsley
(1086), When [ — 2 these functions fg p, with parameters @ and fractal dimension
D for its graph, are ‘intrinsically Gaussian”: they give a derived Gaussian distribution
for any diffuse parent probability measure. This universal resull is proven based on
the self-affinity of the fractal functions and the fact that the result holds for the

uniform measure.
My
— "—l

Figure 5 From a Mnomal mubtifractal to the Caissian vin & frocial imterpolaior. Data points
{(0, 0, {05, 17, (1. 0}k py =07, py =03 4, = —dy = 0995

the construction there are (
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3. The mathematies of fracial interpolators

Given a set of data points on the plane {(x,, y,); 2p<---<xy, A=01,-"-, N},
which from now on are supposed not to be aligned, it is possible 10 construct
continuous functions over | =[xy, xy], whose graphs have any prespecified fractal
dimension, and which perfectly interpolate them.

Following Barnslcy (1986, 1988), such an interpolator may be constructed as
follows. Define N affine mappings on the plane, having the special form

(1) »{;]=(f :}C}+{;) aml, o, N,
and satisfying the conditions
(2) (=) wml)=Co) mmnen

Then, if all affine mappings w, are contractile (05 ja, <1, 0= d,| < 1), the unigue
attractor set G guaranteed by fixed-point theorems, G = w(G) U -« - UwylG ), gives
the graph of a continuous self-affine function f:[x,, xs]— R, which satishies
fix)=y,fori=01,--- N

Equations (1} and (2) result in A sets of four linear equations, from which the
paramelers a,, c,, €, and f, may be computed in terms of the data point coordinates
and the parameters d,:

_ (X~ xay) _ xntao ) = Xoxa)
(X — Xa) : (xy = xo)

Yo ¥umi)  Lyw — v [ _Undai— Xo¥a) | LEn Yo~ KoVw)

(zy — xp) “lan— xq) {xn — X0} " (xn -~ Xo)

form=12--+,N.

The fractal dimension D of the graph G is determined in terms of the horizontal
contractions a, and the vertical scalings d, as follows. 1f X |d,|> 1, then D is the
unique solution of X |d,|a’ ' = 1, otherwise [ = 1

In practice, if the fractal dimension of the graph & is specified, it is easy 1o
determine allernative sets of vertical scalings d, which give sech fractal dimension
D. When the data points are equally spaced in x, the choice is particularly simple
because, then, g, =1/N form=1,2, -+, N, and

log X |d.|
(3} Dtmu{l.] - log N }
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Notice that the fractal dimension D tends 1o 2 when the absolute value of all vertical
scalings tends to 1. Observe also that different parametrizations of possible functions
appear considering all altemative 2V sign combinations of vertical scalings. For
instance, when N =2 the fractal function interpolates three data poinis and &, and
d, could be, respectively: posilive-—positive, positive-negative, negalive-positive,
and negative-negative, In fact, the graphs f, shown in Figures I and 2 are
obtained taking d, = —dy = r >0 for varying values of z, considering a fixed set of
interpolating points. These 2V alternative parametrizations make up the set of
functions that are considered in the interim. They are denoted fi n. with © being all
affine mapping parameters (the data point coordinates and the vertical scalings), and
[ = D(8) giving the fractal dimension of its graph. Whenever possible, both fon
and f will be used interchangeably 1o denote a fractal interpolating function.

An interpolation function f may be computed by means of simple algonthms.
Observe that the space Co(f, R) of all continuous functions h:/— R such thal
hixg) =y, and hixy)=yy, cndowed with the supremum metric, constitules a
complete metric space. Call L, the x-coordinate of w,;

Loil—1
£ J, X+ By el 2 e N

and define @ transformation T:Coll, R)—Coll, R) by (Th)(x}=c.Ll:'(x)+

el b (L37(x)) + o x @ [x.-y, x.]. Then, conditions sel forth in the definition of the
alfine mappings w, and the contractile conditions ensure that T is well defined, and
that it is a contraction mapping on Cg(l, R): see Barmsley (1986). It follows then that
T has a unigue fixed point, In fact, the fractal interpolation function f is precisely
such a fixed point, and it can be computed by iterating T: fi{x) = lim, .« T"(folx))
T" denotes the nth composite T#Te---=T (n times), and f, is any function in
C,lI, R). For ohvious reasons, fis called a deterministic fractal interpolation function.

A good choice for f is the linear interpolation function passing by the onginal
points. Notice that iterating such an fj leads precisely to the geometric procedure
used previously in Figure 1 to introduce the fractal interpolators f;. using a set of
{hree data points and d, = —d>=z In general, G is found following an infinite
N-ary tree rooted at any observation point, say (x;, y;). The first N nodes are the
images of the oot point, obtained using the N affine mappings, and the ree
continues on ad infinitum applying the affine mappings to the newly acquired points
on the attractor.

Yet anather way to construct (5 is 1o follow a single non-trival branch of the N-ary
tree, using each mapping w, proportionally to a prespecified N-tuple of weights
F=(py . pa), where £ p; =1 and each p, >0, and independently from level to
level. This Monte Carlo approach, called the “chaos game’, yields a dense subset of
the deterministic attractor by virtue of the law of large numbers, and provides an
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easy and fast algorithm to display G on a computer screen. The set of mappings
{wy:n=1,2, -+, N} is called an iteraved function system (IFS) by virtue of this
construction of the unique se1 G; see Barnsley (1986, 1988).

As with the construction following all levels of the N-ary tree (i.e. as previously
illustrated in Figures 3 for a binary tree), playing the chaos game also generates
unique stationary measures on the x and y coordinates; see Barnsiey (1986). The
structure of the measures found in x 18 well understood. They are the multiplicative
multinomial multifractal measures with parameters p,, - - -, Py, and length scales
given by the horizontal contractions a, (ie. the relative horizontal spacing of the
data points). When one or more weights are chosen 1o be 0, these measures may be
defined over arbitrary Cantor sets, and the corresponding distributions are "Devil's
stmircases’ with derivatives of the distribution functions being 0 almost everywhere
with respect to the Lebesgue measure.

The chaos game also generates a measure u on the graph G which is simply the
lift of the unique stationary measure found in x. In other words, if h:f— G is the
homeomorphism defined by k(x)=(x, f(x}) and if X is the multiplicative multi-
pomial multifractal measure on x, then p(h(B))= X(B} for each Borel subset B.
Puente (1992) has recently reported on the structure of the derived measures
Y = f(X) = fop(X) in y, defined by ¥ =X(f"'(B)) for all Bore] sets A, ie. the
projection of g over the y axis. When the fractal dimension of the graph of fis close
enough to 2, the derived measures become nearly Gaussian. This happens regardless
of the number of data points, the initial geometry they form, the signs of the vertical
scalings d,, and the weights 5. In addition to proving these results, it will be shown
later that as [) =2 the derived distribution Y = fi5 p(X') approaches a Gaussian for
any diffuse probability measure X.

As mentioned earlier, when D < 2, the range of fa is a closed interval and the
distribution in ¥ is not truly Gaussian. [t will be shown that the range of the fractal
interpolator increases towards (-, =) as the fractal dimension D is increased
towards its maximum value of Z. 1t will also be shown that in the limit the momenis
of the derived distribution approach those of the Gaussian, as illustrated before in
Figure 5 for a uniform measure. The same sequence of functions fa p provides a
derived Gaussian as D' —2 for any diffuse parent measure in x.

4. From a uniform to a Gaussisn via fractal interpolators

Even though fractal interpolating functions are defined implicitly, their moment
integrals

(4) fim = Lx"‘f‘(:] d
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can be evaluated explicitly, see Barnsley (1986). This may be done by employing the
wransformation T previously defined, and using the fact that Tf = [, as follows:

fim= J;-l".lﬂfl'}di

= J;:”[Tf]f{:}d.t

i f' £ (TFY(x) dx

[l=

- j FMea Lo ) + do (L 00 + ) dx

Making the change of variables y = L, '(x). yields fin =T Jila,y + e (cey +
d.f(y)+ f.Va, dy, which includes the term f,., on both sides of the equation.

Hence f, ., may be solved in terms of fi:0=i<m and f,:0Si<m;i+kal+m
recursively, and consequently in terms of the data point coordinates and the affine
mapping parameters. Afer some algebraic manipulations, these moments can be
WTilten as

i
'I.Elﬂ ‘m IEH‘.I

mo+1

1S ("errderi

]-_ Eﬂ:'ld:' fuu =l I
mal

‘i‘:hi#fm{{;) i n.d’;.( e (T)(JZF}G‘J:"#’ ."")} :
Lr-l-" j=0 n=1 L:*Eiﬂ'

When m =0 and [ >0, this formula reduces to

SR TV e
o -

if =0, else

N
1- X ad

If the mesasure in x is uniform, U, then the moments of the derived measure
¥ = f(L) may be computed in terms of the moments of the interpolating function f,
as follows:

1
X = Xy

M my=[ydh=[frw - PO —

En = Xg
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Due to the extremely cumbersome calculations involved, the following theorems
deal with the particular case of three data points. First, it is shown that a Gaussian
distribution is obtained as the limit of denived measures ¥ = fg p(L'} when 02
Specifically, interest centers on the convergence, in distribution, of the random
varniables

(8) g (X) = MM_H

"r"r—_[ftﬂ.urn.]lx]].
such that D(®,)—+2 when i— =, and X is a uniform random vanable in (x,, ¥, ).

Thearem 1. Let fap be a fractal interpolation function with paramcters & and
fractal dimension D(@) for its graph. Suppose that it interpolates an arbitrary sci of
three data points {(x,. ¥, )i =0, 1, 2}, and that it has 2 prespecified choice (signs) of
scaling parameters o, and o Consider the stondardized random variables g(X')
defined above, where X is a uniform random variable over (xg, x:). Then these
random variables converge in distribution to a Gaussian variable Z with mean {0 and
variance 1, ie. lim,_. (X} 5 2, provided that D{8,)—2 when § — =.

Note. Because the Gaussian distribution is characierized by its moments, €.g. se¢
Billingsley (1986), the method of proof is to show that E(g,(X)")— E(Z™) for every
m, i.e. zero for all odd momems and {m —1)=1.3.---. {(m =1} if m is even.
Attention is focused on the case of equally spaced paints in x. The genesal case with
non-equally spaced points may be proved following exactly the same reasoning. This
case is not included here 1o avoid more complications than are necessary. Also, il is
assumed that the parameters d, and d; have opposite signs. The proof for the cases
when d, and d; have the same sign is quite tedious due 1o the absence of
simplifications, and it is not given here. Recall that in lieu of Equation (3],
D = D(@)—2e>|d|— | and 'd;|—=1.

The proof is divided into three parts. First, relevant alpebraic properties of the
moments of fractal interpolators are revealed and proven. Then, the theorem 5
proven by checking the odd and even moments, respectively.

4.1. Algebraic properties of moments of fractal interpolators, Without any loss of
generality, set xp=0, x; =4, =1, and y =0 MNotice that all moment integrals fi.,
depend continuously on the parameters d,, and recall that the fractal dimension D
of the graph of f tends to 2 when both |d,| and |ds] tend 1o 1 (see (3]} As interest
centers on the case when D — 2, it will be assumed that dy=—dy=z>0, with z in
the vicinity of 1 (exchanging signs on d; and d; gives an entirely symmelric case).
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According 1o Equations (1) and (2) and under the preceding assumptions, the affine
mappings which generate the graph of f are:

e w'{:) K {.-.-, —l_v;z S}{\;}

(10) w*{:k{-nw;tz'fll -uz}(:) +(:|}I'

Let us study the peneral form of the expression [or the moment f; ... Note from (5)
that it is a rational function of z whose denominator is of the form [I., (1-
¥ a4d!), where i, . and k,, are non-negative imegers for r=1,---,r In the
present case, this product always reduces to expressions of the form [, (1-
% (1)*zM*%. For reasons that will become clear later, the factors in the last product
having the special form (1 - 2°), k=1 (i.e. the terms whose yools are +1 and -1},
are of particular importance. The letter « will be reserved-10 denote the exponent of
(1 - %) in the denominator of a given moment f; . A moment f,, is said 10 be more
complex than @ moment f, if the former is expressed in lerms of the latter (see 5.
To calculate x, list the moments fi,, in order of increasing complexity as follows.

Begin with f,,. Substituting the parameters in (6), it is easily seen that
fio=1by + iy, and consequently w(f o) = (0. MNote that our choice of parameters
implies that the factors (1 = a2 " 'dy) = 1 for all odd indexes L Then, it follows that
the denomuinator of f,; is 1, or x(f;,) =0 The factor (1 — z*) appears for the first
time in the denominator of f3 g, giving k{fio) = L. This may be seen from (6} noticing
that folz) = (8y,ya— 12y32° + 6ydz — Tydz? —6yiz’ = 12y yoz — 120 o™ + 12y o™ +
16y + Bya)[48(1 = 27)).

From then on, all moments f;., with 122 being more complex than fi, will
include the factor (1-2z") in its denominator at least once, or equivalently,
x(frm) = 1 for 1 = 2. Observe that the factor (1 — z°)° appears for the first time in the
denominator of f, - This is easily seen by noticing that the moments fi s, fiy, fin
fise frz 8od fy, (all needed 10 compute fig), have as denominators, in order, 1,
(1 - 231 - ()7 (L= =) 1, 0 —2H0 - (1)1 - (3e%), and (1-
31 = (1)1 - (1)z%). Consequently, the denominator of f; , becomes

(1= 2201 = (127301 = (™)1 = 2% = (1 = 2P0 = (D)1 - (AF)L + 27),

giving klfoo= 2).

In general, only the terms of the form fi, appearing in the expansion of f .
contribute to its depominator, and only the terms of the form fy, whose
denominator contains the factor (1 - z®) = (1= z)(1 + " +- - - + z%%), contribute
to increasing the exponent k. These results are summarized in the following lemma.

Lemma 1. Denote by x(fi.) the maximum exponent k such that (1 = z%)" is part
of the denominator of the moment fi, Then, k(fi)=t— Ll I <2, and x(fz0) =L
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Proof Given the recursive nature of the moments, this lemma is easily proved by
induction. The results have already been checked when r=1. Nolice thal the
moment foq can be expressed in terms of fri=0,---,2—~1,i+f32 By the
induction hypothesis (i < 2r), these moments have x(f,)=¢—1, and wi{fy, .10} =
t—1, giving x(fiq) =t But the denominator of f,, contains the factor (1= 2%} and
thus sx(fro) =1t

Similarly, the moments f; ., may be expressed in terms of {f :0Sj=m - 1}U
{fu:0=i=1-1,i+j&!+m) Suppose that [ <2, then by the induction hypothe-
sis, (f)sr=1for0=j=m-—1 and x(f)Sr=1 for 0SiSI-1, i+j=l+m
Then, by the result just proven for x(fue), k(fim) S I<2r+1)

4.2, Proof of Gaussian result for odd moments. The proven algebraic properties
of the moments of fractal interpolators are used pext 1o show that all odd moments
of the standardized varigbles g,(X') vanish when D(8,)— 2. Because [INO,)—=2 s
equivalent to z — 1, one may wrile Y{z) = fo.» and look for the moments of ¥{z)as
g1

The mean and the variance of the measure Y{z) arc readily computed from (6).
They arc

(1) @)= 2= g m B 4%
and

12) V¥iz)=ad=foo— (fio) = m'l'[” 1
where

(13)  #z) = =4y, y: + 6ydz — dyiz® - 610" — 12y poz + 12y o2 + dyi + 53

Notice that #(1) = r{—1) = (2y7 - ). Consequently, 1 and —1 are not roots of r(z)
because this would contradict the fact that the original three data points {{0, 0},

{0-5, vy}, (1, y2)} are oot aligned.
The (2m + 1)th moment of the standardized variables g,(X') simply yields

Mz
ﬂﬂ=}m+l
Teme 1
3 (7 YeateX-mterym
= VY

which can be written as 4(z)*™" = E2741 (s, /e{2)Wpof2)(1 — 27)"*), where 5, is a
constant, § =1, - - -, 2m + 1. Since for each term in the sum, g S 2m + 1, Lemma 1

E[g(Xy™""] = Mz} =
(14)
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implies that the number of times in which 1 and =1 are roots of their denominators
i at most m, Le. k(f,¢) @ m Consequently,

(15} Mz = (127 plz)

where piz) is a sum of rational expressions in 2 whose denominators do not contain
1 and =1 as roots. This implies lim,_, #(z)*""' =0, m=0.

4.3, Proof of Gaussian result for even moments. The proof for the even moments
also relies on the shown properties of the moments of fractal interpolators. For this
case, the 2mth standardized centered moment (m = 1) is

i (2m
My(2)™" Eﬂ-{

.j’]‘"’"-, :;"'“'- =
Bl (X" = )™ = X5

aolz W =mey(z yo

¥riz)”

(16}

3 3 5
=¥ g
g-oi{z}
where, as before, each 5, is @ consiant, and (2} is the numerator of V¥ (z2) which
does not contain | and —1 as its roots.

Because of Lemma 1, all terms with g < 2m give x(f; o) < m, and there fore vanish
as z — 1. Consequently, the 2mth moment is approximated by the last term of the
sum, namely Mz} = My(2™lalz)" = fom ol W VY(2)", 2 =1

It is shown by induction on m that the correct even moment values are obtained in
the limit when z — 1. Observe that when m = | the result (1)’ =1 holds by virue
of the definitions of the mean and the variance. Shown next is a recursive expression
that allows the transition from moment Zm to moment 2(m + 1),

Using (6), it is easily scen that

ey dmet-
3

!
fm—z.niﬂzp$n P spa2Wfpf2)
Yzt (- PE RN 2 4 ) ke

where 1,,(z) is a polynomial in z. Expanding the denominator gives

Mzt -

.fam-:ﬂ':.?-]:_ IO e+l dmed-p 5, 42)
W{L”mﬂ 48771 z]"?}n ) f"rlta'!.}[i"'ii*""rzh'_il;"'t:}

and the term /" *Mz)(1+z*++- +z™) does not comain 1 and —1 as roots. By
using Lemma 1 and looking at the denominators of the terms f; (2), it is seen that
the only non-vanishing terms when z — 1 are those with p & 2m. Thercfore, ifz=1,

an 763 F{i}ﬁ (1= 22 W gt fometh 2] + Fm, 1S (2)

+ S 3 fom 2]+ Szmas 10f2me 1 0lE) + Samer i frmera (T



The Gaussiar o ribaeion revisiced 513

As shown in Appendix A, Lemma 1 could be appled 1o obtain the four ratienal
functions famis fama Simero 304 fomeyy in terms of fr,o 50 that a1 the end
Mz s written in terms of (2 ™ when z is in the vicinity of 1. The appendix
also shows a summary of the calculations needed to prove that if lim, _,H{z)™ =
(2mt — 1)!! then lim,, #5471 = (2Zm + 1)1

Remarks. As previously explained, there are two constructions of a fractal
interpolating function which lead in a natural way lo measures over the x
coordinate. First, the following of all nodes of an N-ary tree that succcssively
computes intermediate interpolating points. Second, the following of ome branch of
the N-ary tree being selected via a set of weights p,, n=1,---, N, ie. the chaos
game. When the original data poinis are equally spaced in x, the first procedure
induces a uniform over x, This same uniform is also oblained by the secand method
if pa= 1N, m=1,-- N

When data points are not equally speced in x, the first procedure does not
generate a uniform any more, but the second construction docs if the weights
preserve the spacings between points, i.e. when p, =a,forn=1,--+, N. Therelore,
the Gaussian result under non-equally spaced points in x may be thought of as
coming from uneven iterations of the corresponding affine mappings w,, Le.
Equations (1).

The recursive expressions for the moments of derived measures (Equations (5]
and (6)) can be easily programmed to check the general validity of the limiting
Gaussian. By selecting alternative interpolating dala sels of varying sizes and
alternative sign combinations on the vertical scaling parameters d,, the reader may
verify (be aware of the machine’s precision!) that the derived moments approximate
those of a Gaussian with increasing precision as all \d,|— 1. As an example, Table 1
shows the first ten centered standardized moments of the derived measure in ¥
obtained while interpolating {(0,0-25), (0-7, —(+3), (1,1)) with d,=—-d;=2>0.
Note that as z increases towards 1, the momenis of the derived measure indeed tend
1o those of the standard Gaussian.

Tame 1
Coandardised center=d moments in v (0, -25), (0°7, =0-5, [1. 1), dy=—dy=z >0

Denved measwre

Chicler 2w 0500 = [ £ o= OO0 &= -G A0, 1)
3 1-R6dte-5 f2117e-7 1 96d5e 8 6:2123e-10 04

4 29095550 el i ARG P 30

i 1 PP = f-211 et 1 Ghd5e-T 621117 00

] 14551148 14-956016 14-sa 14- s A00 150

7 2400742-3 &-5053e.5 20621c-8 6522 -8 o4

8 10)-ET414 104-HETIE 104-BAETL 1ikd- FGETS 1050

9 2 ae-1 TR Re-4 2-4784¢c-5 T-HIT2e-T 00
L11] TEI2580 042-13073 0 T1 06 444971 305 G450
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Table 1 also implies that the convergence to a Gaussian is achieved in an orderly
fashion. If z is chosen close 1o 1, so that a given (odd or even) moment is fitted
within & given acccuracy, then all (odd or even) moments of lower orders are
approximated with even higher precision. The following conjecture, supported by
Table 1 and many other examples, shows how a numernical remamnder is shified as
z=]1—10""=099- - is composed by an increasing number of nines.

Conjecture, For n3 1, (fano(l =1077) — (Zm — 1))~ e /10", mZ2, cu <y if
m*‘:p HI'Id 1,f.z..-|,n“T"}_"}l-‘fm.mmm_n”{r. m-ﬁli dﬂ,.ﬂd[ﬂ.lllqdp.m[ﬂ.ﬂ if
m=p.

MNote. The existence of the CONSLANIS Cp, g, dwm, May be readily verified by the
reader, employing the computer program of Equations (5). The results of Theorem 1
and the last conjecture hold also for any arbitrary selup and any number of data
points.

5. From diffuse messores (o Gaussians vis fractal interpolators

It is shown next that the Gaussian result holds when the uniform measure in x is
replaced by un arbitrary diffuse probability measure. A measure with a continuous
cumulative distribution function is required so thal increasingly accurale approxima-
tions could be obtained in terms of measures which are constant (uniform) over
subintervals of increasingly small sizes. The repeated nature (self-affinity) of the
fractal interpolating functions and the already proven Gaussian result for uniform
measures are key in the proof of the following theorem.

Thearem 2. Let X be a diffuse probability measure defined on the interval
I =[xy, x;). Suppose that f ne, is a fractal interpolating function which passes by
the data points {(x,, ¥,):n =0, 1, 2}, and which has a prespecified choice (signs) of
scaling parameters o, and ds. Consider the standardized derived measures g(X), as
defined in (8), such that D(6,)— 2 when i— . Then, lim, .. g(X)% Z, where Z is
a Gaussian random variable with mean 0 and vanance 1.

Note, As in Theorem 1, the proof will be given for equally spaced data points in
I'=0,1] and for the case when d, = —d; =z >0 The proof is divided into three
sections. First, it is shown that resirictions of fractal interpolating functions over
dyadic subintervals [=[(j=1)27%""" j27"* 1), j=],--- 2°7" are themselves
fractal interpolating functions defined over I, for any level n. Second, it is proven,
via Theorem 1, that all restrictions of a fractal interpolating function fyp,
Y{z)=fap, ;=R j=1,---,2"", pive derived Gaussians, which have approxim-
ately the same variance as Y(z) = fao(l') when D2 (z — 1), with I/ being the
uniform measure over [xg, x;} Third, it is shown that weighing the Gaussian
measures Yz} by the weights provided by a diffuse measure X also gives a
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Guaussian measure. [t is important 1o recall that the last step requires not the sum of
random variables but rather the weighted sum of the distributions of those variables.

5.1. Restrictions of froctal interpolators to dyadic subintervals.

Lemtma 2. Let f be a fractal interpolating function with vertical scalings d. which
passes through the data points {(x,. ¥.):n =0, 1, 2}. Then, the restriction of f 10 any
dyadic subinterval is itself a fractal interpolating function which has as parameters
{a) the same vertical scalings of f, and (b) data points corresponding to the images
by f of the initial, middle and end points of the dyadic interval.

Proof. Suppose that the points marked with dots in Figure 6 are the onginal data
points and that the vertical scaling parameters of f are d; = —dy =z > 0. Consider
the affine mappings w, and w, whose unique attracior is the graph of f (see Equation
{1)). Due to the affinity of these functions and their special form, it is easy 1o see
that they map parallelograms which contain vertical lines into parallelograms with

Figure &. Schematic constraction of restrictions of fractal interpolator.
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vertical lines. As shown in Figure 6, w, maps the parallelogram . of height h and
sides parallel to the y axis and the line that passes through (xg, yo) and (xz, y;). inlo a
parallelogram with vertical sides and beight hz Similarly, w, pives another
parallelogram on the right hand side but with the orientation of the vertical lines
inverted, This process is repeated naturally over dyadic subintervals of I = [xg, x;] by
successive applications of the affine mappings.

Now consider the fractal interpolation function f, which passes through the left
side of the fractal, i.e. {{x, Yol ((xp + X W2, f((xg + 2,02, (x,, ¥ )}, and which has
as scaling parameters d, = —d; = 2. Let W, and W, be the two affine mappings which
are needed to define f (see (1)), Then, it is clear that W, and W; are necessarily
distinet from w;, and w,. However, being affine, &, maps the parallelogram
R = wy((2) of height hz, with sides parallel to the y axis and the line passing through
the end points, into a paralielogram with two vertical sides and height (hz)z = Az
A similar statement is true for #,, with the vertical oreintation inverted. It follows
that &, (R} = wy(wy(Q)). and #(R) = w(wy(Q)). Then, the desired result follows by
induction just iterating on the affine mappings wy and wy.

Remark. The generalization of this lemma to any geometry, with any number of
data points and any choice of the parameters d,, is straightforward.

5.2. Derived measures on dyadic subintervais,

Lemma 3. Let f be a fractal interpolating function passing by the data points
{(x., v, }:n =0, 1, 2} with scaling parameters d, = —d, = z > 0. Consider the derived
measures ¥(z)=f(U) and Y{z)=f(L)} with U the uniform measure over /=
[%o,%:], and U, the uniform measure over a natural dyadic subinterval [,
j=1,--+,2"" for any n, with J being the restriction of f over [, Then, the variance
of all the ¥(z) and the variance of ¥ are approximately equal when z =~ 1.

Proaf. Let h be any fractal interpolating function with vertical scalings d, =
—d, = z >0 which interpolates three equally spaced data points {(f,, ¥,):a =0,1,2}
If z=1 it is easily seen from (6) that hao/(£:— 2o) = (hyo/(£2— £o))’ = (28, -
Fo— #20°/[48(1 — 27)). The approximation stems from the fact that the numerator
shown appears as the limit when z— 1 {e.g. see (13)).

The lemma is proven by realizing that for all dyadic subintervals 2y, — yg — ¥al ™
12§y = $u= ¥4, provided that z ~1. This could be seen by following the images of
(%1, ¥y} via wy and w; (see (9) and (10)). The interpolating function defined in Figure
1 provides a simple example of this fact. In this case, yp=);=0, y, =1 and then
By, = ¥~ ¥a| =2 As explained in Section 2, " is added at the nih stage so that if
[£0. £2] is a dyadic interval then §, = [(fo+ £2)/2] £ 2" Qlearly, [2f, = fo = f~2 as
z =1 for any n.
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53, Weightings of Gaussian distributions. Thus far it has been established that there
are derived Gaussians everywhere on the interval /= [0, 1]. All derived measures
¥z} = fo.oll,). based on uniforms U, defined over dyadic subintervals /, < [, 1end 1o
a Gaussian when D —2 (2 —1). Moreover, they all have approximately the same
variance when z =~ 1, for all n.

Suppose that # is large and let Fy be a cumulative distribution which approxim-
ales Fy employing 277V +1 dyadic values, FR{j2™"""y=F(j2"""), j=
0,1,-,2*", Define g,=F{27"") - F(j=12""") and let U be the
uniform measure over §, = [(j— 127", 27", for j=1,- -+, 2*"". Then, Lem-
mas 2 and 3 give the standardized centered moments of the variables ¥j(z) for z =1
{see (14) and (16},

[f""u. 2} dFy(x) J;,I":"""{x. ) dFiix)

)

Limel -
A (VY (my 27y

(18)
2! Jf“‘"{r.ud:
- —=0,
el Lf’tr,z}dx) '
[ e, aFi o
Mfz)m = : -
(] e 2y=myten? dFisto))
(19) ‘

2+t Jf""'{:, r)dx
- : e (2m — 1)1
[ o)

The variances VY,(z} can be safely approximated by the mean squares mrr{z}’ since
in the vicinity of 1 the variance tends to infinity, while the mean remains constant.
For the same rcason, the numerators above have been wrillen without subtracting
the mean.

The moments of the derived measure ¥(z) = fi, n(X) are found weighting those
of the variables ¥j{z):

r'!l
j’f""[x. ) dFelx)= 2 _[J""L'I. z2)2'*g, dx
! =i
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therefore, wsing (19), the even moments give

m.-{:}l""_ Elﬂ',]"*l j;_fh(:.:}d_t
V¥iz)™ [E:q nel L.I"?[I-I}'d-‘:}-

1=t

M) =~

3 qom - 2o ([ e 2y dx)

- mida m
=] |
(J‘_.E.1 22" Lﬂx. 2)dx)
?--I
(2m — n.-rEI q VY (z)"

(EI q;¥Yilz 1)“

~ {2m - 1)!!

since all variances WY, are approximatcly equal and since X g, =1 A similar
arpument, paralicl (o the one used in Theorem 1, shows that the odd moments
vanish when z — 1.

By letting a—= and z—1, Jf™(x)dFy— [ f™(x) dFx and therefore the
thearem follows,

This last theorem may be restated for a family of diffuse probability measures and
in particular for the family of hinomial multfractal measures.

Corollary 1. Let X, X2, ¢+, X, be diffuse probability measures with values on
the closed interval I, Then, there exists a sequence of fractal interpolating functions
fo.n: -+ R such that the derived measures fo nlX)), faolXa) - -  fo.p(X.) all 1end
1o a Guassian when D — 2.

Corollary 2. Let B(p) be a hinomial multifractal measure with arbitrary length
scales and defined over a closed interval /. Then, there exists a sequence of fractal
interpolating functions fap:/— R such that the derived measures ¥, = fa.ol{B{pP))
tend to a Gaussian when D—2 forall p, O0<p<1.

Remarks. As previously explained, weighing Gaussian distributions should not be
confused with adding Gaussian random variables. The remarkable Gaussian
property just proven is a consequence of the very peculiar structure of the self-affine
fractal interpolating functions of high fractal dimensions. Of course, adding
Gaussian random variables gives another Gaussian, butl weighing (summing)
Gaussian distributions (densities) hardly gives another Gaussian.

Theorem 2 holds for any sign combinations on the scaling parameters d,, and for



The Goutrian diteribunion reuined 519

Figure 7. From a Cantoran multifracial measure 1o the Gamssian vin o fracial imerpodaior. Data pomis
{00, o), (0-2,1), (04, =1}, (06 -1), (081D, (1,00 py =03 pym0d py=0, p.=025 py=0-15
'dl. = _If_l;ﬂ; =gy 'dj.-i]'?ﬂﬁ

any number of arhitrarily placed data points. It is easy to generalize all steps of the
previous proof il the data points are not equally spaced or it 1#[0, 1],

Playing the chaos game always defines diffuse measures. 1f there are more than
three data points, then one or meore weights p, could be set Lo zero yielding
measures defined aver Cantor sets. Figure 7 illustrates that in fact the Gaussian
resull is true for Cantorian multifractal measures, All the dots in x vs y align
themselves so that they collectively give a Gaussiar in y. Of course, the result shown
in Figure 7 is valid even if the chaos game is not played to find the figure. In fact, for
example, a Cantorian measure is transformed inlo a Gaussian using a fractal
interpolating function passing by three arbitrary data points. And in this case no
simple construction via the chaos game could be made.

Figure § showed an example of a Gaussian obtained via a hinomial multifractal
measure with egual length scales and p = 0-3. If the parent measure is chanped but
the interpolating function in Figure § is kept fived, different Gaussian measures
appear in y. Table 2 shows what the effect is of the multifractal parameter p on the
first two moments of the derived measure.

TamE 2
The mean and mandard de-
vinon w y for allermative

b nemmal mutnfracials
fol, o, (n-5, 1% 00, 0N, d, =
= dy = 0955
F my Ty

-1 O 20 2-365
-3 032 2:ET75
{4 ] 2850
05 O S00 -89
ii-f 0-59% 2652
07 -6 2268
0-8 0-rel 110
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6. The Ganssian result and the central limit theorem

It is easy to see that the results proven imply 2 central limit theorem. As an
example, consider three data points (. ¥a):n=0,1,2} dy=-d:=2>0 and
define Y(z)=f.(U7). with U being the uniform measure in |Xq, x;). Now, constrect
the fallowing random variables:

W, = Y{0)
W = Y(3/4) = ¥(0)

W, = ¥(1 = 1fn?) = Y(1- L/{n —1¥)

so that ¥7, W, = ¥(1 — 1/n"). Then, clearly, this sum of random variables {after
normalization) converges to a standard Gaussian when n— =. This central lhimit
theorem is by no means trivial because it could be easily seen that the random
variables W, are: (a) dependent, (b) non-stationary and (c} unbounded.

It is certainly interesting to know if the result proven here is a simple consequence
of a general central limit theorem. If so, such a theorem should accommodate the
natural telescopic choice for the summands above. On the one band, the
dependency gives the least of the problems because the W, being 1-dependent are
weakly dependent (see Billingsley (1986)). This allows usage (in principle) of ceniral
limit theorems for a-mixing random variables. On the other hand, the other two
properties on the W, do impose severe limitations for the usage of readily available
theorems.

Extensive attempts were made to sec if the variables W, satisfied general existing
central limit theorems, but no success was attained. To illustrate the difficulties, a
general theorem due to Phillip and Stout (1975, pages 95-97) is paraphrased next. Il
is required first that the W, satisfy the condition

(20) max E W, - E{W,JF* "= O(V[W,]"*")

for some 0< & 5 2 and some 0= p = 1/4, where E[W,] and V[W,] are the mean and
the variance of the W,, and O stands for the big o. Also it is required that

Mo N Mo N 3y

@) 3" - Bt~ o[ S n-Em) )
AeMal =M =]

uniformly in M =1,2,--- for pe=1/10, with |[;., denoting the 2+ & norm

((BLX= P ™),

Due to the nature of the fractal interpolators (see (4)), only the case when & =2
could be checked analvtically, Afier some calculations, it is found that the lefi-hand
side in (20) grows much faster than the righi-hand side, and consequently the
theorem cannot be applied. For other values of 8, @ numeric exploration was tried.
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Figure B, Ratis of the lefi-hand side over the right-hand side of {20) as & function of & p = 0-25

All cases considered also gave much fasler growth on the lefi-hand side of (20},
leading again to the conclusion that such a general central limit theorem cannot be
applicd 10 prove our result, Figure 8 shows some examples of the ratio of the
lefi-hand side over the righi-hand side, r, as a function of n. As is seen, therc is a
power law increase in all cases with larger ratios for higher &

It is not known at this time if there is a generalized central limit theorem (other
than that of Phillip and Stout (1975)) which covers the limiting Gaussian results of
this work. This is an open guestion. It could he that our result, proven via the
moments, may lead to generalized central limil theorems as the one in this section,
or it could indeed by that it fits & very general central limit theorem.

7. Final remarks

It is always possible 1o transform any diffuse probability measure into & Gaussian
by means of a transformation 7. What is truly remarkable is that the fractal
functions f o described in this work lead to Gaussians when D — 2, regardless of
the initial diffuse probability measure. The fractal interpolating functions of high
fractal dimensions are therefore intrinsically Gaussian, As far as we know, these
fractals are the first known non-random mathematical objects with such a property.
Generalizations to higher dimensions may also be carned oul so that bivanate
Gaussian measures are obtained; see Puente and Klebanoff (1994).

Although other ‘non-random’ constructions of the Gaussian distribution exist, ¢.g.
via dynamical systems with enough mixing (see Beck and Roepstorff (1967) and
Ratner {1973)), the one provided here is remarkably simple. The construction is
particularly appealing because it is based on geometric objects which have increasing
relevance in the study of nature (ie. fractals and multifractals), The connection
between ‘disorder’ and “harmony’, as exemplified in Figure 5, further stresses the
relevance of the new construction.

As the magnitude of the scaling parameters d, is increased, and as alternative
parent binomial (multinomial) multifractals arc induced, a wide vanety of derived
measures appear in y (see Figure 3 for the uniform case). These denved measures
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include multifractal measures (other than the natural multinomial muhifractals) and
for high enough fractal dimensions measures which appear 1o be absoluiely
continuous. Given their connections to fractals and turbulence, such derived
distributions represent viable alternatives for modeling nawre’s processes. This idea
is supported by the fact that the two extreme cases (Gaussian and multifracials)
could be constructed within this framework.

Appendix A. Calculations of inductive proof for even moments

Equation (17) may be writien expanding the coefficients (s5,,) in terms of the
parameters of the affine mappings as follows:

‘.'!_-."_q-lvﬂiz}
‘T{.‘::I"'I

= f(2m + 1)(m + 1){a, [} + a2 1) frmol2)

+(2m 4+ 1)(2m + 2@y fi + @262 B)2 " foma(2)
(A1) (2m 4 1)(m + 1)@ ] + 2203)2% fom (2]
+(2m + 2N, fi — a2 fo 32 ™ o 1.0(2)

1
VYY)

+(2Zm + 2)a 0y ~ 226302 fam-11(2 )}

Each of the last four rational funclions may be written in terms of fo.o(z) for z in
the vicinity of 1. The following expressions are found using Lemma 1.

(o2 + ﬂ;f;}ﬂhﬁnﬂll
| = (ai + a3)e™

(A2) Srma(z)=

et + a:ed)™ fimolz) + 2ate, + alten)2™ fm (2}
1- (@i +a3)e™

(A.3) fam oz )=

(A4) famerslz)=(2m + 1Ha, fi + @2 £)2* fomelz) + (2m + 1)a;c, = 220302 famal2)
Famera(2) = (2m + 1)@ fi "'ﬂ'.rfi,ﬁkhfzm_nlﬂ
(A5) + {2m + D{aif, + aiciey + @i + aze2e)2 Y om (1)

+ (@y€) — @262 famer o) + (2m + 1){ate, + aedz ™ fum 2l )
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Replacing all these equations back into (A.1), and using the values for the affine
mapping parameters as implied by (9) and (10) one gets,

EF]

fumeaolz) J'ith_i:__'f:'f: +:r:3r.:‘"'+[”’ wyz™ { T E.z*'"}
LE L (4-22™) fz-ﬂ}
L2

+{ -y + ol Eh 16— Ba,h}_h h‘.(htl‘n-‘- Yoz )
(A.6) ( _T)

— {22y = 2n +y*™ I{ ]5 Szl“)

+r;2=.'-&-2h*h_ll=""”(m P i )
4 2 A-4™

ET R E _.z_"“__
“}l:{iz}-\;—zh ya)2 {E +:ﬁ—ﬂzh}} (m + 1)(2m + 1)fomel2)

(4-2") VY@~ '(1-z") -

A recursive equation of .#(z)™™*" as a function of .#(z)™" is obtained replacing one
term VY(z) on the right-hand side by ¢(z)/48(1 - =*) according te (13). The limit
when z—1 is obtained term-by-term, expanding the quotient 1/{} =z™"%) as
(1 = 27M1 + 2% # « - % ™)), and noticing that

fim 1 _ 48
1= VY1 =228 (m 4 1020 - 1)

The limit is
fim A(z)* 7% = ([24y3] + [24y5(2ys = 3)] + [By2 = 3P + [B2y2 — 1 F]
= (129,025 + p)] = [1203p: = 2y )y + 3]
(A7) + By~ 20000 + 3] - Byt = 0l s lim (e
=(2m +1) .l;;ni,ﬂtz]“.

Consequently, if lim, ., 4(z)* = (2m — 1)!! then lim, ., #(z)*"* = (2m + 1)!!
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