The unitive art of the Most Blessed Trinity
Carlos E. Puente

Cover. As we conclude this series of talks on the key role of science in the New Evangelization, I would like to thank you, once again, for your presence.

Today’s presentation is entitled The unitive art of the Most Blessed Trinity. Here it is shown how a geometric approach to natural complexity yields, in a limiting case, some defining traits of the Most Blessed Trinity.

Needless to say, it is very humbling for me to share this presentation, especially as we celebrate today the Solemnity of the Ascension of the Lord. Certainly, I never thought, as a scientist in general nor as a hydrologist in particular, that I would be in a position to say anything about the central doctrine of our belief, but God works in mysterious ways and it is my joy to share this talk convinced that it will propel you to adore the Most Blessed Trinity, even more.

This presentation is also very special to me, as it was through its contents that I got to experience the living God for the first time in my life, some 23 years ago. I will refer to such an unforgettable conversion experience later on.

Page 2. The thesis of this work is that we humans, with the gift of a soul, may learn from recent advances regarding natural complexity in order to find the peace of Christ and share the good news in a novel way.

Page 3. It all started some 25 years ago, when I discovered the beautiful work of Michael Barnsley regarding the mathematical definition of profiles that look like mountains. At the time, one of the key problems in hydrology was to study how river networks evolved, and I thought I could approach such a problem by extending Barnsley’s
notions to a higher dimension. My idea was to somehow generate mountain surfaces, from which to extract their rivers under distinct circumstances.

Although the idea appeared to be good, I ought to say that such did not work very well, for the surfaces I got contained unnatural ridges that made their rivers look strange. However, as you will see, working with these notions turn out to be rather useful, in a different way.

Page 4. One of the features that attracted me to Barnsley’s work was the inherent simplicity of the construction of a pattern and the fact that it required few parameters to fully define it.

So that you appreciate the notions, here is how a “mountain” profile is built.

First, we start with three points making up a triangle: the ones shown here on the left, middle, and right, and then we join them from left to right via two line segments. Then, from the middle of such segments, we go **up** and **down** a quantity z to define two new points.

The quantity z is a parameter of the construction together with the placement of the original three points.

Page 5. Now we join the five points, the three initial ones and the two acquired on the previous page, via four line segments from left to right, and we then define four additional points by going **up**, **down** and the reciprocal **down**, **up**, but now a quantity z squared.

Page 6. In a remarkable way, the mountain arises when the process is repeated, adding points by the middle of line segments using a sequence of **ups** and **downs**, in increasing powers of z.

Clearly, a limiting profile is found only when the additional details decrease and such imposes the restriction that z ought to be a number less than 1.
Page 7. It happens that Barnsley’s ideas give rise to other interesting profiles, besides the mountain’s. This page shows alternative shapes as defined by other similar constructions, which correspond to z equal to 0.5 and to the points of the initial triangle $(0,0)$, $(0.5,1)$, and $(1,0)$.

While the case $+ -$ corresponds to the previously shown mountain, case $- -$ yields a symmetric mountain that comes from an alternating sequence of ups and downs, in which all points on a given power of z behave similarly: first all down, then all up, then all down, and so on, and case $+ +$ defines a symmetric cloud profile in which all points are obtained going up.

Page 8. As shown here, comparing the constructions for values of z equal to 0.5 and 0.8, the profiles on the right require more ink, as they are clearly thicker and have a larger vertical range than the ones on the left.

Such objects, which look like convoluted wires, indeed fill more space as z increases beyond 0.5, and they have the interesting property that their lengths, from beginning to end, become infinite.

These wires, duly connected, are topologically one-dimensional, but, as they fill distinct amounts of space, they may be assigned fractal dimensions which, depending on z, could be any number between 1 and 2. In fact, while the objects on the left all have dimension 1, the ones of the right have a dimension equal to 1.68.

Page 9. Not trying to bore you or confuse you with mathematics, but just trying to set the ideas so that you may fully appreciate how mysterious and wonderful God’s ways are, I ought to explain that there is an alternative way that allows defining the curious profiles.

As discovered by Barnsley himself, the sets, which lie on the (x, y) plane, may be obtained, point by point, by arbitrarily iterating the
two simple maps shown below, which take a point in the plane into another point in the plane.

The idea is that one may use the outcomes of successive coin tosses to progressively compute points by using one or the other equation, say, \(w_1 \) if heads and \(w_2 \) if tails, starting the process at one of the three points making up the original triangle.

As if by magic, the bombardment of dots so produced arranges itself to always paint a given wire, and this happens irrespective of chance and of the type of coin used, either fair or biased.

Page 10. As you may see, the two maps themselves are indeed quite simple. As they are really the only equations necessary to understand this talk, please allow me to describe them to you a little bit.

First, in regards to the \(x \) components, notice that while \(w_1 \) just divides the input value by 2, \(w_2 \) divides by 2 and then adds to it one half. This means that \(w_1 \) produces outcomes placed on the left and \(w_2 \) on the right of the domain of a wire, which, as seen, ranges from 0 to 1.

Now, in regards to the \(y \) components, both maps, \(w_1 \) and \(w_2 \), are defined by linear combinations of the input \(x \) and \(y \) values. While a parameter \(d_1 \) multiplies the \(y \) value on the first map, a parameter \(d_2 \) does so on the second map.

Page 11. At the end, the maps contract the end points into end and internal values and the signs portrayed on top of the shown profiles correspond to the signs of \(d_1 \) and \(d_2 \), which in these graphs have a common magnitude equal to \(z \). The profile for case \(-+\) is not shown, as it is simply the mountain of case \(+\) flipped.

Page 12. At about the same time I was trying to generate mountain surfaces, I encountered a lovely article by Charles Meneveau and
Katepalli Sreenivasan regarding the uneven structure of turbulence. As I described in detail in the first talk of this series, when the inertia of a fluid subjugates the fluid’s cohesion, the fluid breaks into an irreversible chain of inwardly rotating eddies, which divide into eddies, that divide into eddies, and so on, which leads to an uneven and intermittent concentration of energies that begets natural violence.

What Meneveau and Sreenivasan found was that observations of turbulence along a line were universally consistent with a permutation of the spiky object shown here, a multifractal set defined via a cascading process that progressively fragments the energies via a 70-30 proportion, leading to thorns of energy arranged by layers and emanating from disperse dusts, energies that eventually dissipate in the form of heat.

Page 13. It so happens that the spiky set, defining the tomes of a universal blueprint of turbulence, may also be obtained as the histogram of points progressively generated by iterating the two maps shown here, w sub 1 and w sub 2, using a biased coin, such that w sub 1 is used 70% of the time and w sub 2 is employed the remainder 30% of the time.

 Appealing to your memory two pages ago and having used the same notation, you may recognize that the two maps here are just the x components of the earlier maps, which operated: w sub 1 to the left and w sub 2 to the right of the domain.

If a coin yields heads 70% of the time and one uses w sub 1 accordingly, one may visualize how the depicted cascade is formed. For instance, at the second level –where the descending arrow ends and the biggest eddy shown rotates– the coin would have been tossed twice and the histogram would account for all possible products of 70% and 30% twice, that is, from left to right, 49, 21, 21 and 9%.

5
Page 14. As is seen, the previous **wires** and these spiky **textures** are related to one another and one may employ the simple two-dimensional maps, yes the ones given two pages ago, to find at the same time not only a profile but also a spiky multifractal over x.

Once I realized that such was the case, the notions led me to the following questions: How would the implied histograms look over the y component? Could it be that they may be useful to describe hydrologic processes related to turbulence, such as rainfall?

Page 15. In the spirit of the discussion, here is, above left, a **fractal wire** and the corresponding histograms over the x and y components, called dx and dy, as found while using a 70-30 coin.

While dx is the previously described blueprint of turbulence, the rather complex-looking derived histogram dy may be understood in **Platonic** and physical ways, as follows.

Page 16. If we think of the wire as a system from x to y, its output dy may be thought of as the shadow cast by the wire when such is “illuminated” by the input dx, in a manner that resembles Plato’s notions in his famous allegory of the caveman in The Republic.

Page 17. As the united wire is a mathematical function from x to y, then a derived histogram dy may also be thought of as a physical **transformation** of turbulence, one that rearranges the energies in the original eddies.

Page 18. As shall be seen and for my scientific joy, combining fractals and multifractals turned out to be a very good idea as this construction represents a novel vision to natural complexity, one in which a seemingly-**random** dy turns out to be, at the end, an entirely **deterministic** set that may be understood in terms of the
By now we know that the notions of shadows, or projections to be precise, produce, by varying the underlying parameters—including the bias of a coin—, a host of sets that resemble natural time series, encompassing the observed statistical features such as autocorrelations and power spectra.

And the Platonic ideas may also be used to approximate specific data sets, such as a rainstorm in Boston shown here on the right.

As is seen, the real and the projected sets, the latter in the middle and given via a wire defined not by three points but by five, although not identical, clearly belong to the same family, and such happens to be the case as they share similar statistical and chaotic features.

In an encounter I had with the late Benoît Mandelbrot, the grandfather of fractals, he asked me what was shown on the right of this page and I answered, “rainfall in Boston.” He replied, “then, what is next to it is also rainfall,” to which I said, “thank you very much.”

It happens that the ideas may be extended to higher dimensions, iterating simple maps having more coordinates, such that they define fractal wires from one to two or from one to three dimensions.

As illustrated here on the left, a non-trivial wire yields interesting shadows over two dimensions, complex, yet deterministic sets that,
again, resemble natural patterns. As is seen on the right, the notions may yield, from a wire in four dimensions, complex patterns over three dimensions that model pollution and also rainfall data in space.

Page 22. Although these results are quite remarkable, there is even much more, as we may study what happens in the limit when the key parameters of wires reach their maximum possible values.

For a wire over two dimensions with d_{1} approaching 1 and d_{2} approaching minus 1, that is, the case $+ -$, we see here the surprise that follows.

Page 23. The wire grows such that it densely fills the plane from minus infinity to infinity, it acquires a dimension that tends to two, and, in the process, transmutes the thorns over dust in the input multifractal into the smooth harmonic Gaussian normal bell curve with a finite center.

This wondrous result happens to be universal as bells happen from the same wire, not only while using fair or arbitrarily biased coins, but also for any non-discrete input dx, including spiky objects defined over infinite and disperse dusts.

Page 24. As these results imply a non-intuitive transformation of the dissipation of turbulence into the conduction of heat implicit in the bell via Fourier’s law—and not the other way around as in the common passage from order into chaos—, this unexpected discovery urged me to think about the ultimate meaning of a limiting wire capable of converting spiky violence into diffusive calmness.

Though resisting the unscientific thought at first, I finally concluded that such a space-filling transformation was somehow related to love. For what else could transform dust and dissipation into something harmonic and conducting but love?
This is how, in a rather surprising but wonderful way, I finally applied the appointed algorithm for our reconciliation, and upon forgiving and asking for forgiveness of all I could remember, that is, my ups and downs, I begged Jesus to reveal himself to bring meaning to my life, and, right after that, and accompanied by tears of joy, I experienced the delightful heat of the bell in my heart.

What can I say? God’s ways are indeed rather mysterious and I can add that He is also quite merciful!

Page 25. Now, leaving the case when both $d_{sub 1}$ and $d_{sub 2}$ are positive for later, it is worth noticing that when both parameters are negative and approach -1, the construction does not define a single bell, but rather oscillations between two bells, in a periodic fashion.

Page 26. It occurs that Gaussian shapes are also found for wires defined over higher dimensions.

In a suitable limit, the corresponding wires fill up now volumes and, in this superior dimension close to 3, they cast shadows of bells independently of non-discrete illuminations dx.

As is seen here, a multifractal dx –drawn in the lower center– enlightens a limiting wire from x to the plane (y, z), depicted to the right in its two components from x to y and from x to z, to define a two-dimensional circular bell on the left, as shown from above in dyz and on the sides in dy and dz.

Page 27. Even though circular bells are the most common, depending on the signs of higher-dimensional equivalents of $d_{sub 1}$ and $d_{sub 2}$, the limiting projection may also be either an elliptical bell or an oscillation between many bells whose centers dance around or inside a circle.

These Platonic notions generate in the limit **Gaussians every-**
where, a notation inspired by Barnsley’s lovely book “Fractals everywhere.”

Page 28. Interestingly, even if one were to consider only half of such a wire, one would still encounter bells as shadows, and this regenerating property happens to be true for even smaller parts, *ad infinitum.*

Page 29. Eventually, we proved the Gaussian result in the one-dimensional case, but the two-dimensional counterpart remains elusive, even to this day. As such and as it occurred to my collaborator Aaron Klebanoff, we decided to study how the concentric circles were formed, drawing not the final summary of all the iterations as done here, but rather plotting successive groups of, say, 2,000 points.

Page 30. What we found is astonishing and is showcased here. The iteration of simple linear maps defines, in a suitable limit, exotic decompositions of the two-dimensional circular bell.

Page 31. The two galleries of *treasures* here are just examples of an infinitude of patterns that magically interlock with one another (and with many more) to form *perfect circles* and truthful bells. The geometries obtained depend on the precise sequence used to guide the iterations, that is, on the specific outcomes of a coin, and on other parameters that dictate the number of tips the patterns have.

Next time you hear a bell just remember that the melody it makes to call attention is made of incredible beauty!

Page 32. As is seen, in this rather geometric central limit there is hidden *order in chance,* and the exquisite sets happen as if “from
glory to glory,” reflecting love and inciting due praises.¹

Page 33. The treasures are certainly varied, and we know by now that all **ice crystals**, as on the left, and several biochemical rosettes, including the one of **DNA**, as on the right, are mathematical **designs** living inside the bell.

The ice crystals shown here were grown by my lovely wife Marta filling up templates of photographed flakes using limiting maps yielding patterns with six tips, as in nature.

In regards to the DNA rosette, the pattern shown below is a representation found iterating two suitable linear maps yielding ten tips, while guided by the binary expansion of \(\pi \). Remarkably, spokes and rings are on the right places when compared to the image on top as it appears in biochemistry textbooks, and this improbable finding, requiring the alignment of 40,000 bits of \(\pi \), hints not at a “blind watchmaker” but rather at an extremely capable visionary.

Page 34. Even though these results are clearly beautiful and intriguing, there are yet more surprises when considering the ever-positive case on a two-dimensional wire.

Page 35. When both \(d_1 \) and \(d_2 \) approach plus 1, we obtain a fractal wire shaped as a cloud and not as a mountain, and the Platonistic ideas define yet another bell, but now centered, or concentrated, at **infinity**.

What is shown here is not the ultimate limit, but what is found when the parameters equal 0.99. As such numbers tend to 1, the bulk of the cloud elevates to infinity and the mean –the center– and the variance –the spread– of the histogram over \(y \) both tend to infinity.

But the ratio of the square root of the variance over the mean tends

¹2 Cor 3:18, Ps 139:17–18
to zero, indicating, with all probability, the limiting presence of an infinite spike at infinity.

Page 36. With due imagination, we may see how, in a mystical manner, this powerful wire, **maximally positive** and also thick as two-dimensional space, raises it all to the clouds, filtering any kind of disorder, thorns, and dust –except for a discrete input– into an improbable condition of plenitude without entropy, yet reflected by the melodic bell.

How not to recognize here a manifestation of freedom and true divine **LOVE**? For, in comparison, the previous wire of the case + -, containing ups and also downs, turns out to be just a rather imperfect imitation, as it has a finite center.

Page 37. How not to appreciate here an essential call to the eternal? For in the directionality of the diagram, from x into y, and in the passage from obscure dissipation to luminous conduction at infinity, we may exclaim with Saint Paul: “Where, O death, is your victory? Where, O death, is your sting?”

Page 38. To further emphasize the vitality of the limiting positive wire, it ought to be added that manifestations of violent processes may be used as dx to be filtered into the bell concentrated at infinity.

This includes any data yielding so-called **power-law** distributions, probability densities that decay slowly in the form of a cutoff x raised to a negative exponent c, “heavy tails” in negative lines in doubly logarithmic scales.

Page 39. These laws are prominently found in natural and man-made **complexity** and typically produce violence. These encompass

2 Cor 15:55
the famous Richter scale of earthquakes, Richardson’s relationship for conflicts and wars, and Pareto distributions defining wealth inequalities of nations and among nations.

To make it very clear, the redeeming transformation does exist, but it works only in the limit when the key parameters tend to unity. If such a limit is not invoked, then the entropy in an input leads, via a sub-optimal wire, to entropy in the output, and, hence, the selfish, negative and heavy power of power-laws still dominates.

Page 40. In this very spirit of redemption, how not to celebrate a most beautiful diagram, one illuminated by steady equilibrium, that is, obtained via a fair coin, which completes a **majestic trilogy**?

For here we may witness, symbolically of course and with due humility also, the **Father**, powerful in heaven, conducting and diffusing perfect infinite love; the **Son**, always constant and positive, as in the very shape of the cross, and the clear geometric solution of “filling the valleys and cutting the mountains;”\(^3\) and the **Holy Spirit** that proceeds from them both and whose love fully transforms us if we allow it.

Page 41. For this same limiting diagram also allows us to visualize some key events in the life of Jesus Christ and yet other important symbols, as follows.

Page 42. From \(y\) into \(x\) we may envision Jesus’ divine **birth**, for as said in Scripture, the Spirit overshadowed Mary and He came to be,\(^4\) and also the same power that allowed Him to perform His many **miracles**.\(^5\)

\(^3\)Is 40:4, Lk 3:5–6
\(^4\)Lk 1:34–35
\(^5\)Mt 12:28
Regarding the miracles, such include prominently the daily transformation of bread and wine into His body and blood in the **Eucharist**,\(^6\) which in its smallness is still as infinite and powerful, for just a tiny piece of the whole positive wire, by its superior dimension, also gifts the same bell at infinity.

Page 43. From both \(y\) into \(x\) and \(x\) into \(y\), we may appreciate the **unity** Jesus has with God the Father,\(^7\) the nature of His reconciling **baptism** with spirit and fire,\(^8\) that is, the conduction of heat that I experienced, and the awesome event of His **transfiguration**.\(^9\)

Page 44. From \(x\) into \(y\), we may appreciate His glorious **resurrection** from death –even if from a spiky multifractal denoting our sins–,\(^10\) and vividly, his subsequent **ascension** into Heaven,\(^11\) which we celebrate today.

In the same directionality from \(x\) to \(y\), we may also grasp the **Assumption** of Our Mother, the blessed Virgin Mary to Heaven, certainly aided by the power of the Holy Spirit, and the appointed **rapture** of the **Church** when those being alive shall meet the returning Lord Jesus in the clouds.\(^12\)

Also based on the diagram, although not drawn to scale as the range of the wire in \(y\) grows to infinity, we may reflect on the lovely encounter between St. Augustine and the little boy at the beach.

As the transformation herein is indeed capable of taking all the ocean –in the black rectangle– into a single point centered at infinity, the little boy was certainly hinting at an unlikely possibility, little bucket by little bucket, in order to explain the mystery of the Most Holy

\(^6\)Mt 26:26–28
\(^7\)Jn 14:11
\(^8\)Mt 3:11
\(^9\)Lk 9:29
\(^10\)Lk 24:5–6
\(^11\)Lk 24:50–51
\(^12\)1 Thes 4:16–17
Trinity to the Saint, something that in modern terms may be referred to as a reversal of the big bang.

Page 45. Continuing with due imagination, the special limiting diagram, but based on a multifractal input reflecting our cascading sinfulness in imbalances and holes, may also be used to portray other relevant matters of our faith.

Page 46. Besides the aforementioned statement by St. Paul regarding life’s victory over death, this diagram potently expresses the liturgical invocation during the communion rite when the priest asks Jesus, “Look not on our sins, but on the faith of your Church,” that is, not on the dissipative and deadly dx, but on the limiting wire, which guarantees our peace in dy.

Page 47. Quite vividly the diagram also shows why love, in the infinite wire, covers a multitude of sins in dx^{13} and how the flesh, symbolizing sin, produces the dissipation of death in dx, but the Spirit life, and life eternal in dy^{14}.

Page 48. Similarly, the diagram portrays why indeed the law, represented by a uniform dx that Jesus fulfilled, is only a shadow of good things to come in the spiritual realm and in eternity in dy^{15}. In addition, we may appreciate from the diagram why the one blaspheming against the Holy Spirit is guilty of an everlasting sin, as without the positive limiting wire the output simply can not reach infinity, as it also happens with a discrete dx.

\[^{13}\text{1}^\text{Pt 4:8} \]
\[^{14}\text{Rom 8:13, Jn 6:63} \]
\[^{15}\text{Heb 10:1} \]
\[^{16}\text{Mk 3:29} \]
Page 49. To further appreciate the nature of the key spiritual wire, its surprisingly simple construction is emphasized here once again. We start with the three points as indicated by the squares. Then, after joining them with straight lines, we find two points going up a quantity z from the middle of such segments. Then, we join the original points and the ones just defined, left to right, and from the middle of these segments we go up a quantity z^2 squared to find four additional points. Then, we continue the process *ad infinitum* to fill in the gaps by mid-point additions, going up, in increasing powers of z.

Page 50. When z and all powers of z tend to 1, the key cloud of the plus plus case is found, a transformation that coincidentally is shaped, for smaller values of z, as angel wings or like the wings of a dove.

In the limit, this object contains indeed mighty infinite unity as reflected in the Eucharistic doxology, and in the whole trinitarian diagram, when it is said of Jesus: “Through Him, with Him, in Him, in the unity of the Holy Spirit, all glory and honor is yours Almighty Father, forever and ever. Amen.”

When listening to the priest next time, realize that the unity of the Holy Spirit is not just a nice saying, but a truly mighty reality worthy of all praise.

Page 51. Furthermore, given that $1 = 0.999\ldots$, such unity also reflects an absolutely infinite symphony of love in the outward and positive spiral of number 9, as explained during our first encounter.

Page 52. Such a loving trait is also seen geometrically in the spiral shape and meaning of the irrational number e, for, after all, the calculus of love, in Jesus’ command of integration without differ-
entiation, is only achieved in the exponential function, \(e \) raised to a positive value \(x \).

Page 53. And it happens that the essence of the Spirit \(e \) and the cross \(x \) are also found in Jesus’ celebrated parable of the vine and the branches, you remember it of course in the Gospel of St. John chapter 15,\(^{17}\) which defines the ultimate power of love with Him, the one and only, the number 1, if we, by picking up our crosses, that is, by becoming \(1/x \), remain together with Him, to have in His company –the middle plus– the true infinite power (or exponent) of love in the shape of the cross that gives rise, in our pursuit of the truth, to the Holy Spirit.

Page 54. At the end, the glorious limiting diagram may also be associated with key symbolic trinitarian numbers, as follows. On each one of the three blocks we may recognize the numbers 0, 1 and infinity. The perfect uniform reflects obvious unity, contains no deviations, and is dynamically built by a fifty-fifty cascade forever. As mentioned before, the transformation denoting the Holy Spirit contains infinite unity everywhere; and the bell at infinity closes into a single spike with no variation.

Page 55. The famous irrational numbers \(\pi \), the square root of two, and \(e \) turn out to allegorically describe the three members of the Most Holy Trinity. In addition to the connection of \(e \) with the Spirit just explained, the square root of two denotes Jesus in the distance of the 45 degree ramp obtained by accumulating the uniform law from left to right, that is, the hypotenuse of the first talk, and having an equation \(Y = X \), in which we also see, as mentioned earlier, His silhouette on the cross. Finally, \(\pi \), the most celebrated number in the history of mankind, symbolizes God the Father, as its shape potently

\(^{17}\)Jn 15:1–10
reflects the halo of His everlasting sanctity and, coincidentally, the very symbol of the Origin.

Page 56. Consistently, these irrational numbers are part of the very formula of the bell that also symbolizes our true **freedom** in the practice of love and away from sin.

Page 57. The notions on this presentation, by their contrasting of limiting infinite cases or not, allow us to identify some of our **options**. Those are: conduction or dissipation, infiniteness or finiteness, plenitude or solitude, trust in God or disbelief,

Page 58. faith or doubts about Him, freedom or slavery, living one day at a time to fulfill an implicit central limit or suffering under anxiety, harmony or intermittency,

Page 59. light or darkness, the heavenly or the earthly, the always positive or a bit of a negative, and at the end, true **love** or else.

Page 60. At this time, I would like to share a song with you, one entitled **The amazing bell**:

Pages 61-62.

The bell peals silent, o o
reflecting its peace,
and inside it gathers
lovely masterpiece.

Symmetric pure beauty, o o
o mighty delight,
this limit in fullness
stores life’s designs.

Such vessel contains, o o
alephs of all tastes,
diatoms and crystals
including DNA.
But there is a case, o o
reason to this call:
the forward selection
that raises it all.

There is clear choice
that rotates the 8,
by loving sincerely
we surely converge.

Notice, this is cogent:
the bell’s central theme,
by living in freedom
one fulfills the dream.

There is transformation
that kindles the heart,
by loving in plenitude
we become smart.

For love mends the spiky
and takes to the clouds,
by living the present
one joins blessed crowd.

O see, this is truthful:
the plus all the way,
by loving the enemy
we learn how to play.

Dimensional growth,
oh essence of life,
by living in harmony
one nails normal plan.

O notice the symbols,
oh irrational might,
by loving simplicity
we experience the light.

O listen, you colleague,
let’s go out the cave,
by living in unity
we shall all prevail.

O notice, my friend,
the plea from a bell,
by loving and loving
joy will have no end.

Page 63. Now, very close to the end, and to continue summarizing and praising, here is a poem called The antidote:

Page 64.

From x into y
as unnatural flow,
mapping immensity
leaving dust below.

From x into y
springing all awe,
o plus of liberty
forever aglow.

From x into y
only a tiny piece,
wired to totality
o normal release.

From x into y
o infinite fleece,
by packing vitality
no thorns but peace.

From x into y
singular the dough,
symphony of unity
breeding single row.

From x into y
by breaking a spell,
amazing simplicity
o refuge from hell.

From x into y
from holy plateau,
perennial immunity
o spirit on the go.

From x into y
triune is the cell,
omnipotent divinity
o sacred God’s bell.

Page 65. And now, really to finish, I would like to invite you to praise our Lord Jesus Christ via the following song.

Pages 66-68.

\[Y = X \]

is justice that illuminates,
is balance that fascinates:
\[Y = X. \]

\[Y = X \]

is the practical alliance,
is the precious reliance:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is true word that matures,
is a spiral that endures:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is the spotless resting place,
is the state of mighty grace:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is smoothness that esteems,
is a lovely dove that gleams:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is the short and precious root,
is the weaving of the truth:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is a future that forgives,
is crowned science that is:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is the ever tender tune,
is the impartial tribune:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is all innocence that heeds,
is a garden with no weeds:
\[
\text{Y = X.}
\]
\[
\text{Y = X}
\]
is the simple clear sign,
is the majestic design:
\[Y = X. \]
\[Y = X \]
is brotherhood that heals,
is diversity that shields:
\[Y = X. \]
\[Y = X \]
is the real chaste embrace,
is the goodness of a yes:
\[Y = X. \]
\[Y = X \]
is a smile that edifies,
is a spin that rectifies:
\[Y = X. \]
\[Y = X \]
is all gentleness in us,
is the everlasting plus:
\[Y = X. \]
\[Y = X \]
is inspiration that calls,
is growing to be small:
\[Y = X. \]
\[Y = X \]
is the forgotten territory,
is the improbable story:
\[Y = X. \]
\[Y = X \]
is revelation that nests,
is surrendering the rest:
\[Y = X. \]

\[Y = X \]
is the dustless short incline,
is the faithful narrow line:
\[Y = X. \]

\[Y = X \]
is renouncing all spears,
is experiencing no fears:
\[Y = X. \]

\[Y = X \]
is the perennial giveaway,
is pure life with no decay:
\[Y = X. \]

\[Y = X \]
is the only perfect remedy,
is loving, even the enemy:
\[Y = X. \]

Page 69. And the letters J, X and Y as in Jesus, the cross, and his silhouette, were recently identified on the holograms made by Petrus Soons on an oval stone placed under the chin of the man on the Shroud, which you may see in the museum here, or searching on the web!

Page 70. It has really been an honor and a great joy for me to be here and I would like to thank you again for your presence. There is a bit more in my God-given books, but all has been said: all praise and honor be to our artful Triune God. Amen.