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Abstract 
 

The Gaussian bell, over one or more dimensions, is one of the most ubiquitous mathematical objects in science. 
This work explains, essentially summarizing previously published research, how the iteration of simple maps leads 
to universal constructions of bells, over two and three dimensions, which surprisingly define vast assortments of 
exotic kaleidoscopic decompositions of the circular and spherical bells in terms of crystalline patterns that include, 
among others, the geometric structure of ice crystals and that of the DNA rosette. 

 
 

Introduction 
 

In order to set the stage, it is pertinent to start by explaining a mathematical game that uses two simple 
maps, from the plane to the plane: 
  

𝑤𝑤1(𝑥𝑥,𝑦𝑦)  = (0.5 ⋅ 𝑥𝑥, 𝑥𝑥 + 𝑑𝑑1 ⋅ 𝑦𝑦) 
𝑤𝑤2(𝑥𝑥,𝑦𝑦) =  �0.5 ⋅ 𝑥𝑥 +  0.5, 1 –  𝑥𝑥 +  𝑑𝑑2 ⋅  𝑦𝑦�, 

 

where 𝑑𝑑1 and 𝑑𝑑2 are parameters. As it may be shown that 𝑤𝑤1(0,0)  =  (0,0), 𝑤𝑤2(1,0)  =  (1,0) and 
𝑤𝑤1(1,0)  =  𝑤𝑤2(0,0)  =  (0.5,1), it happens that 𝑤𝑤1 operates to the left and 𝑤𝑤2 to the right of the domain 
of the maps, which is the interval [0,1]. 
 

The game is one of chance and to play it one needs a coin. The tosses determine which map to use, 
say, 𝑤𝑤1 if heads and 𝑤𝑤2 if tails. Figure 1(a) plots the aforementioned three points and highlights the 
middle one (0.5,1) to start the game. Then, select 𝑑𝑑1  =  −𝑑𝑑2  =  0.5 and imagine that the first toss is a 
head, then using 𝑤𝑤1 on the middle point yields a point to the left, as shown in Figure 1(b). Suppose now 
that a head occurs again, then such gives the point marked in Figure 1(c), If now there comes a first tail, 
the next point will be on the right, as in Figure 1(d). Figure 1(e) shows what is found when this iterative 
process is carried out 100 times, and Figure 1(f) portrays the eventual set obtained, which is known as the 
attractor of the maps. 

 
Figure 1: Progressive random usage of two simple maps and their ultimate attractor. 



Following the seminal work of Barnsley [1], it may be shown that the random iteration of the simple 
maps herein always produces (irrespective of the coin tosses of a fair or a biased coin) the interesting 
geometric attractors in Figure 2, whose shapes vary depending on the signs of the parameters 𝑑𝑑1 and 𝑑𝑑2. 
As seen, such sets are shaped as convoluted wires, from 𝑥𝑥 in the horizontal to 𝑦𝑦 in the vertical, that pass 
through the aforementioned three points, and they evoke either mountain or cloud profiles. The − + case 
is not shown as it mirrors the + − case. 

 

        
Figure 2: Attractors of the maps herein for shown sign combinations of 𝑑𝑑1 and 𝑑𝑑2. |𝑑𝑑1| = |𝑑𝑑2| = 𝑧𝑧. 

As seen, as the magnitude of 𝑧𝑧 increases beyond 0.5, the wires become thicker and hence require for 
their plots increasing amounts of ink. This means that beyond 𝑧𝑧 =  0.5, such wires become fractal 
objects as they may be assigned non-integer dimensions greater than 1. In fact, when 𝑧𝑧 tends to 1 (which 
is the maximum value that guarantees the existence of a connected attractor) the wires become so massive 
that they tend to fill the whole two dimensional space. 

 
 

Shadows from Fractal Wires 
 
It happens that playing the iterations game not only defines a unique attractor, but also a unique texture 
over such a wire that reflects how the attractor is filled. This means that using a fair or a biased coin will 
result in distinct textures. Using a biased 70-30 coin (one that implies using 𝑤𝑤1, going left, 70% of the 
time and 𝑤𝑤2, going right, 30% of the time) makes the acquired points be more to the left than to the right. 
As seen in Figure 3 and as introduced by Puente [3], such defines interesting stable projections (shadows) 
𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦, simply by computing histograms of sequential points over the 𝑥𝑥 and 𝑦𝑦 coordinates. 

 
Figure 3: Shadows 𝑑𝑑𝑥𝑥 and 𝑑𝑑𝑦𝑦, over 𝑥𝑥 and 𝑦𝑦, from iterations giving the wire mountain of Figure 2. 



The flow of the construction goes from 𝑥𝑥 into 𝑦𝑦 and the “output” 𝑑𝑑𝑦𝑦 may be thought of as the 
“shadow” made by the wire when “illuminated” by the “input” 𝑑𝑑𝑥𝑥. As seen, 𝑑𝑑𝑥𝑥 has a decisive repetition, 
which turns out to reflect, in its precise layering, the so-called multifractal structure seen in fully 
developed turbulence, as discovered by Meneveau and Sreenivasan [2]. The texture 𝑑𝑑𝑦𝑦, derived 
ultimately without chance from 𝑑𝑑𝑥𝑥 via the wire function, exhibits a seemingly random structure that 
defines, generalizing the maps and varying their parameters and given analogies of the notions with the 
famous allegory of the caveman, a Platonic approach to natural complexity, as introduced by Puente [9]. 

When the parameters 𝑑𝑑1  =  −𝑑𝑑2 =  𝑧𝑧 tend to the limit of one, the attracting wire tends to fill up 
two-dimensional space and the shadow 𝑑𝑑𝑦𝑦 approaches a Gaussian bell, not only for a multifractal input 
𝑑𝑑𝑥𝑥 as illustrated in Figure 4 when 𝑧𝑧 =  0.999, but also for any non-discrete input 𝑑𝑑𝑥𝑥, which includes 
using coins having arbitrary biases. This result, proven by Puente et al. [5], establishes an unforeseen 
bridge between disorder and order, as the maximally infinite wire transforms the violent, and ultimately 
dissipative, spikes of turbulence into the harmonious and smooth bell associated with heat conduction. 

 
Figure 4: From a multifractal to a Gaussian bell via a space-filling wire. 

 
 

Extensions to Higher Dimensions 
 
The notions leading to wires and projections may be extended to higher dimensions so that the iteration of 
simple maps, but with more coordinates, produce attractors either from a line into a plane − from 𝑥𝑥 into 
(𝑦𝑦, 𝑧𝑧) − or from a line into a volume − from 𝑥𝑥 into (𝑦𝑦, 𝑧𝑧,𝑤𝑤) − yielding wires having fractal properties as 
they have non-integer dimensions that now range from 1 to 3, or from 1 to 4, respectively. 

In the three dimensional case and for wires passing by the points {(0,0,0), (0.5,1,1), (1,0,0)}, the 
construction entails iterating  
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in which the previous parameters 𝑑𝑑1 and 𝑑𝑑2 are substituted by matrices, which in polar coordinates are: 

�𝑑𝑑1 ℎ1
𝑙𝑙1 𝑚𝑚1

� =  �
𝑟𝑟1

(1) cos𝜃𝜃1
(1) −𝑟𝑟1

(2)𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1
(2)

𝑟𝑟1
(1) sin𝜃𝜃1

(1) 𝑟𝑟1
(2) cos𝜃𝜃1

(2) �,  �𝑑𝑑2 ℎ2
𝑙𝑙2 𝑚𝑚2
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𝑟𝑟2

(1) cos𝜃𝜃2
(1) −𝑟𝑟2

(2)𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃2
(2)

𝑟𝑟2
(1) sin𝜃𝜃2

(1) 𝑟𝑟2
(2) cos𝜃𝜃2

(2) �. 

It happens that the obtained output textures (histograms), now over the plane (𝑦𝑦, 𝑧𝑧) and over the lines 
𝑦𝑦 and 𝑧𝑧, besides adding to the notion that iterations of simple maps may be used to define a Platonic 
approach to natural complexity, also result in limiting two-dimensional bells, which happen when the 



magnitudes of all radial parameters 𝑟𝑟𝑛𝑛
(𝑗𝑗) tend to one and when the involved angular parameters are 

synchronized, 𝜃𝜃𝑛𝑛
(1) = 𝜃𝜃𝑛𝑛

(2) + 𝑘𝑘𝑛𝑛 𝜋𝜋, for 𝑘𝑘𝑛𝑛 integer. 

There are sixteen cases on the sign combinations of 𝑟𝑟𝑛𝑛
(𝑗𝑗) values. Twelve of them happen to define 

Gaussian bells and the other four oscillations among several bells, Puente et al. [11]. The most common 
case, the one of a circular bell, is illustrated in Figure 5. Here, an input multifractal 𝑑𝑑𝑥𝑥 (the same as before 
and reflecting usage of a biased 70-30 coin and shown in the bottom center) gets transformed, by the thick 
wire from 𝑥𝑥 to (𝑦𝑦, 𝑧𝑧), shown projected from 𝑥𝑥 to 𝑦𝑦 and from 𝑥𝑥 to 𝑧𝑧 on the right, into a bivariate bell that 
yields 𝑑𝑑𝑦𝑦𝑧𝑧 from above and 𝑑𝑑𝑦𝑦 and 𝑑𝑑𝑧𝑧 from the sides.. 

 
Figure 5: From a multifractal 𝑑𝑑𝑥𝑥 to a circular two-dimensional Gaussian bell. 

As before, the obtained limiting textures happen universally except for discrete input illuminations. 
As explained by Puente and Klebanoff [4], while there is a proof for the aforementioned one dimensional 
bell in Figure 4, a similar demonstration for the two-dimensional case is not easily found, and such 
suggested studying how circles, as in Figure 5, are formed while performing the iterations. 

 
 

Exotic Beauty in Circular Bells 
 

As discovered by Puente [7], when successive iteration values are plotted over the (𝑦𝑦, 𝑧𝑧) plane in 
successive groups of, say, 2,000 dots, surprises emerge. As illustrated in Figure 6, with successive shapes 
plotted by columns from top to bottom and from left to right, the circular bell turns out to be made of 
beautiful crystalline patterns, which turn out to reflect a graceful central limit theorem. 

     
Figure 6: Exotic kaleidoscopes inside the circular bell for 90° and 60° angular parameters 𝜃𝜃𝑛𝑛

(𝑗𝑗). 



The ever-changing patterns inside the bell make up unforeseen kaleidoscopes that evoke the concept 
of “the aleph,” as introduced by Jorge Luis Borges in his famous tale by the same name. Quite literally, 
selecting radial parameters with magnitudes close to 1 (|𝑟𝑟𝑛𝑛

(𝑗𝑗)| ≈ 1) and angles dividing exactly 360° 
define a “point of light” (to quote Borges) from which to see great many shapes that makes explicit 
hidden order in chance. 

 

 As illustrated in Figure 7 for sample sets with 20,000 dots, the circular bell contains a myriad of 
patterns having arbitrary 𝑠𝑠-fold symmetries, interesting rosettes, such as the ones admired by several 
civilizations, that may be classified, depending on the signs of the radial parameters, as having radial or 
rotational traits, as reported by Puente [8]. 

        
Figure 7: Sample rotational and radial rosettes inside the circular bell. 

Just iterating simple maps, it may be shown that the geometric structure of nature's ice crystals are 
found inside circular bells as concealed mathematical designs. This is illustrated in Figure 8, which 
portrays nine crystals inside the bell that match photographed crystals, whose templates were successively 
filled pasting together pseudo-random sequences of iterations using a nearly space-filling wire having 
angular parameters equal to 60°. As explained by Puente [8], these sets are made of a variable number of 
points, which range from 83,000 to 164,000 dots. 

 
Figure 8: Sample ice crystals inside the bell. 



The bell contains indeed a plethora of ice crystals, like the ones in Figure 9, which were obtained by 
Puente and Puente [10] performing the iterations of two simple maps having angular parameters equal to 
60° and according to the binary expansion of 𝜋𝜋. These crystals, shaped as stars and sectors and made of 
100,000 points, have specific shapes that exquisitely depend on the precise sequence of 0's and 1's 
employed. Being slices of the circular bell, these crystals grow by diffusion, as in nature, and, as they 
only appear in the limit when the corresponding wire fills up space (and not before), they may be thought 
to be born in the “plenitude of dimension,” as coined by Puente [8]. 

       
Figure 9: Ice crystals inside the circular bell encoded via the binary expansion of 𝜋𝜋. 

A single infinite space-filling wire may surely encode infinitely many rosettes that may be made 
explicit, say, performing the iterations according to the binary expansions of irrational numbers. Although 
it may not be easily surmised if any irrational number will ultimately define the same patterns that, say, 𝜋𝜋 
does, space-filling attractors may certainly store vast amounts of information in a manner that boggles the 
mind. 

There is yet, however, another striking application. The rosette of DNA, one having ten sided 
symmetry as the double helix twists base by base by 36°, is also found inside the Gaussian bell. Although 
there are several alternative iterations that may fit a template of the pattern associated with life (Figure 10 
left, as it appears in biochemistry textbooks), it happens that such pattern is also nicely approximated 
while performing the iterations of two suitable maps using the binary expansion of 𝜋𝜋. In fact, choosing 
two maps with angular parameters equal to 36° and iterating them guided by the first 40,000 bits of 𝜋𝜋 
yields a rosette that, very improbably, resembles the natural one (Figure 10, right). As explained by 
Puente [7], this is a rather suggestive finding, given the prominence of 𝜋𝜋, which, in addition, hints at an 
organizational principle based on geometric design, rather than blind chance.  

     
Figure 10: The DNA rosette and a counterpart inside the bell coded by the binary expansion of 𝜋𝜋. 



Exotic Beauty in Spherical Bells 
 
The construction of wires over four dimensions is similar and requires replacing the 2x2 matrices in polar 
coordinates by 3x3 matrices in spherical coordinates, as explained in Puente et al. [13]. Some of the sixty 
four cases on the sign combinations of the new radial parameters do result, as may be expected, in 
beautiful higher order kaleidoscopes, as illustrated over distinct spaces for three sets of 10,000 dots each 
in Figure 11. 

 

 
Figure 11: Two cases of sample three-dimensional sequential patterns inside the spherical bell. 

 
 

Concluding Remarks 
 

This work has made explicit hidden kaleidoscopic treasures inside circular and spherical Gaussian bells 
that would inspire wonderment the next time you listen to a bell. Despite all this beauty, there is a case 
worthy of further reflection that corresponds to a limiting wire, from 𝑥𝑥 to 𝑦𝑦, which defines an amazing 
bell concentrated at infinity that happens to embody, by the shape of the bell and the associated statistical 
independence of an implied central limit theorem, true freedom. Such a case is the space-filling cloud of 
the plus−plus choice, which inspired me to write the following verses, as further explained in Puente [12]. 

 



The bell peals silent, 
reflecting its peace, 
and inside it gathers 
lovely masterpiece. 

 
Exotic pure beauty, 
o splendid delight, 
this limit in fullness 
stores life’s designs. 

 
Such vessel contains, 
alephs of all tastes, 

diatoms and crystals 
including DNA. 

 
But there is a case, 
reason to rejoice: 

o forward selection 
that raises it all. 

 
O plus−plus election 
that opens the door. 
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