
December 5, 2012 9:20 0218-348X 1250024

Fractals, Vol. 20, Nos. 3 & 4 (2012) 261–270
c© World Scientific Publishing Company
DOI: 10.1142/S0218348X12500247

CLOSING THE LOOP WITH FRACTAL
INTERPOLATING FUNCTIONS FOR

GEOPHYSICAL ENCODING

HUAI-HSIEN HUANG,∗ CARLOS E. PUENTE,∗,§

ANDREA CORTIS† and BELLIE SIVAKUMAR∗,‡
∗Land, Air and Water Resources
University of California, Davis

One Shields Ave, Davis, CA 95616, USA
†ION GX Technology

Houston, TX 77042, USA
‡Department of Civil and Environmental Engineering

University of New South Wales
Sydney, NSW 2052, Australia

§cepuente@ucdavis.edu

Received March 29, 2012
Accepted October 5, 2012

Published November 19, 2012

Abstract
Natural data sets, such as precipitation records, often contain geometries that are too complex to
model in their totality with classical stochastic methods. In the past years, we have developed a
promising deterministic geometric procedure, the fractal-multifractal (FM) method, capable of
generating patterns as projections that share textures and other fine details of individual data
sets, in addition to the usual statistics of interest. In this paper, we formulate an extension
of the FM method around the concept of “closing the loop” by linking ends of two fractal
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interpolating functions and then test it on four geometrically distinct rainfall data sets to show
that this generalization can provide excellent results.

Keywords : Fractals; Multifractals; Rainfall; Particle Swarm Optimization; Fractal-Multifractal
Approach; Inverse Problem.

1. INTRODUCTION

Over the past few decades, research into the
representation of complex natural data sets has
resulted in the development of many sophisticated
mathematical techniques, such as those based on
stochastic theories and fractal geometry.1,2 Despite
providing a suitable language for describing and
simulating intricate data sets, these methods are
still largely inadequate for studying the vast vari-
ety of time series on an individual basis. In particu-
lar, while relevant statistical (physical) attributes
may be retained, the realizations given by these
approaches often fail to replicate specific details
(e.g. positions of major peaks) and textures (e.g.
periods of no activity) of noisy and erratic data.

The intrinsic limitations with the above
approaches inspired us to propose a fractal geo-
metric methodology,3 called the fractal-multifractal
(FM) approach, that uses fractal interpolating
functions4 to transform multifractal measures into
derived projections with the hopes of representing
the overall complexity of natural patterns beyond
key statistical features. Indeed, our FM approach
(and its variants) is capable of deterministically
generating a multitude of “seemingly random” pat-
terns over one or more dimensions based on a small
number of parameters yet still preserving distinct
characteristics of data sets.3,5–10

In this paper, we introduce yet another gener-
alization of our FM approach by combining pro-
jections of two fractal interpolating functions that
share the same beginning and end points. The
idea to “close the loop” was inspired by unrelated
notions in particle physics, in particular, the neces-
sity of loops to describe the weak gravitational
forces using strings. The goodness of this idea is
then tested with four distinct high-resolution rain-
fall data sets measured in Iowa City, USA.

2. METHODS

In this section, we describe the construction of the
original fractal-multifractal approach and the new
extension.

2.1. The Original
Fractal-Multifractal Approach

In its original form,3 a FM pattern is obtained as
the projection of the graph of a fractal interpolating
function weighed by a multifractal measure. Specifi-
cally, the graph G = {(x, f(x)) |x ∈ [0, 1]} of such a
function f : x → y passing by N + 1 ordered points
along x, {(xn, yn)|x0 < · · · < xN , n = 0, 1, . . . , N},
is defined as the unique “attractor” of N affine
maps4:
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n = 1, . . . , N (1)

where the vertical scalings dn satisfy |dn| < 1, and
the other parameters an, cn, en, and fn are given
by the following initial conditions:
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xn

yn

)
, (3)

which contract the ends of the domain (in x) into
interior subintervals.

In virtue of a fixed-point theorem, the attrac-
tor G exists and contains the N + 1 interpolating
points.4 Substitution of Eq. (1) into (2) and (3)
uniquely determines, in a linear fashion, the val-
ues of an, cn, en, and fn in terms of dn, the ver-
tical scalings, and (xn, yn), the coordinates of the
interpolating points. Ultimately, the iteration of the
affine mappings in Eq. (1) yields a unique (and
hence deterministic) set G having a fractal dimen-
sion 1 � D < 2.

In a practical setting, the graph of a fractal inter-
polating function, typically shaped as a convoluted
wire, is obtained by a point wise sampling of the
attractor through a procedure also known as the
“chaos game.”4 The idea is to start the process at
a given (xn, yn) already in G and progressively iter-
ate the N maps wn according to, for example, the
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outcomes of independent “coin tosses.” As this pro-
cess is performed, a unique invariant measure that
reflects how the attractor is filled up is also induced
over G. The existence of such a measure (akin to a
histogram in practice) allows computing unique —
and again, fully deterministic — projections over
the coordinates x and y (denoted by dx and dy)
that turn out to display irregular shapes as found in
a variety of geophysical applications and beyond.5

Figure 1 shows an example of a fractal wire
passing through the four points {(0, 0), (0.26, 1.93),
(0.53,−3.18), (1, 1)} as generated by 214 iterations
of the three maps

w1

(
x
y

)
=

(
0.26 0
1.93 0.01

)(
x
y

)
+

(
0
0

)
, (4)

w2
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, (5)

and
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(
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)
=

(
0.47 0
4.99 −0.82

)(
x
y

)
+

(
0.53

−3.18

)
. (6)

In other words, the maps w1, w2, and w3 have con-
tractive vertical scalings d1 = 0.01, d2 = 0.44, and
d3 = −0.82 and operate into the intervals [0, 0.26],
[0.26, 0.53], and [0.53, 1], respectively. In addition to

Fig. 1 The FM approach: from a multinomial multifractal
measure, dx, to a complex derived measure, dy, via a fractal
interpolating function, f , with equations given in the text.
By construction, both dx and dy add up to one. Their scales
are not shown due to aesthetic reasons.

the graph G, the figure also displays the projections
(histograms) dx and dy, induced while carrying the
previously mentioned chaos game according to a
biased 51%:8%:41% proportion on w1, w2, and w3.

As the x-coordinate is independent of y, as
implied by the zero value in Eq. (1), dx turns out
to be a recursively-generated deterministic (multi-
nomial) multifractal, as given by a classical multi-
plicative cascade defined over [0, 1] and with length
scales (0.26, 0.27 and 0.47, from the domain of the
three mappings in x) and fixed multipliers (0.51,
0.08 and 0.41, from the proportions used in the
iterations), yielding a rather structured object con-
taining an ordered sequence of spikes, in this case
decaying in magnitude from left to right and with
less mass in the middle subintervals, ad infinitum,
due to the smaller multiplier.11

In turn, dy is the derived distribution of dx
implied by f , and such a histogram is defined, for a
given value of y, adding the corresponding dx’s that
satisfy f(x) = y. As can be seen in Fig. 1, the set
dy, that is, the projection of the unique invariant
measure generated by playing the chaos game over
the y axis, does not exhibit the same kind of rep-
etition observed in dx. As may be inferred by the
specific shape of the attracting wire f , dy roughly
follows the ups and downs of the wire-like function
in terms of its y-crossings and the derived measure
yields: (i) a sequence of rising events, from top to
bottom, corresponding to oscillations on f on the
right-hand side of its domain and culminating with
the highest peak that corresponds to the highest
peak over x, (ii) a period of almost no activity over
the middle and due to few crossings on such a region
compounded with little mass over x, and (iii) an iso-
lated “event” at the bottom whose mass arises from
the juxtaposition of several oscillations on f by the
middle of its domain and hence the additions of sev-
eral masses dx. It turns out, that the obtained dy’s,
for suitable combinations of the involved parame-
ters, resemble complex natural time series such as
rainfall patterns.7,12

As reflected by ubiquitous power-law scaling
on their power spectra and the presence of a
well-defined multifractal spectra, such deterministic
sets typically do not exhibit obvious trends when
the dimension of the fractal function f does not
approach its limiting value of two. Typically, they
look like patterns of nature, and they appear ran-
dom to the eye.5,14 To further illustrate such a fact,
Fig. 2 shows an example of an attempt to fit a
storm in Boston (shown on the far right) via the
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Fig. 2 An FM approximation of a Boston storm. The FM
construction is based on five interpolating points and four
affine maps.14 The Boston storm is shown normalized so that
its values add up to one. Both the derived measure dy and
the rainfall intensities for the storm are defined over 1990
bins that correspond to measurements every 15 seconds.

fractal-multifractal approach using a fractal wire
that passes by five points. As is seen, the projection
dy, adjacent to the real set, looks similar in texture
to the actual storm, which prompted even Benoit
Mandelbrot, the late genius and father of fractals, to
exclaim at a Gordon Conference on Fractals, “if the
pattern on the right is rainfall, then the one on the
left is also rainfall,” to which the senior author of
this article replied “thank you very much.” In fact,
the two sets shown are indistinguishable in regards
to a host of statistical attributes, including a pos-
sible description of them based on notions of chaos
theory.14

At the end, by varying the parameters defining
the fractal function f and the implied multinomial
multifractal dx, one can obtain, via the chaos game,
a plethora of interesting sets.5 Given the connec-
tion of a binomial multifractal with equal length
scales and multipliers 0.7 and 0.3 with the observed
energy dissipation in fully developed turbulence,15

in case dx is such an input to a construction similar
to the one given in Fig. 1 but based on two maps,
the derived measure dy may be given a “physical”
interpretation as a transformation (via a fractal
function f) of turbulence, or also, loosely speaking,
such a dy may be thought of as a “reflection” or a

“projection” of turbulence. As illustrated in Fig. 1
and also Fig. 2 and as explained earlier, a mea-
sure dy is built adding up values of dx that satisfy
y = f(x). As a consequence, dy is obtained perform-
ing a local “integration” over the fractal function,
akin to a fractional integration, of the spiky mul-
tifractal dx that comes from a multinomial multi-
plicative cascade.

2.2. Extension via “Closing the
Loop”

As seen from Fig. 1, the structure of a fractal inter-
polating function is that of an open string that
has a beginning and an end. In this manuscript,
we explore the idea of closing a loop by having
two fractal functions that meet at the ends. As
an illustration, Fig. 3 shows a second wire f2 of
an obviously higher dimension, passing through
the points {(0, 0), (0.26, 2.90), (0.53,−2.97), (1, 1)},
which share the same start and end points as well
as the x-values of the middle points of the wire in
Fig. 1 named f1. The three associated maps are

ŵ1

(
x
y

)
=

(
0.26 0
2.38 0.52

)(
x
y

)
+

(
0
0

)
, (7)

ŵ2

(
x
y

)
=

(
0.27 0

−5.72 −0.15

)(
x
y

)
+

(
0.26
2.90

)
, (8)

and

ŵ3

(
x
y

)
=

(
0.47 0
4.80 −0.83

)(
x
y

)
+

(
0.53

−2.97

)
, (9)

corresponding to scalings d̂1 = 0.52, d̂2 = −0.15,
and d̂3 = −0.83 and operate into the same intervals
as before, i.e. [0, 0.26], [0.26, 0.53], [0.53, 1], accord-
ing to the same weights, 51%:8%:41%. This new d̂y,
named dy2, is shown to the right of the previous dy
(as in Fig. 1), now called dy1, and by combining
the two, using 27% of the first and 73% of the sec-
ond, we obtain the graph shown on the right, named
dy loop.

Of course, a curious reader would notice that the
values employed in defining all the maps until now,
i.e. Eqs. (4) to (9), are not entirely arbitrary, nor
is the choice of the weights used to combine the
projections from the two wires. In fact, the com-
plex set shown in Fig. 3 will reappear later on
in the paper when dealing with a specific storm
gathered in Iowa City which resembles it. The
interested reader may certainly change parameters
via the online appendix located in http://puente.
lawr.ucdavis.edu/omake/fractals2012.html in order
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Fig. 3 Closing the loop via the FM approach: from a multinomial multifractal measure, dx, to two complex derived measures,
dy1 and dy2, via fractal interpolating functions, f1 and f2, which weighed give a measure dy loop, with equations given in the
text. By construction, all measures add up to one. Their scales are not shown due to aesthetic reasons.

to further appreciate the richness of the patterns
that may be obtained by combining two wires.

As may be readily seen in Fig. 3 and also via
the aforementioned online appendix, closing the
loop provides interesting patterns that, although
requiring more parameters, surely add to the reper-
toire that can be obtained via projections of frac-
tal functions. After all, weighing two single wires
using 0’s and 1’s gives back the original fractal-
multifractal approach and hence closing the loop
results in a suitable generalization. In the remainder
of the paper, we shall further illustrate these ideas
to elucidate if with them we may closely encode four
rainfall sets, as just accomplished via the original
procedure.12

3. RESULTS AND DISCUSSION

The data sets to be examined in this section are
a subset (four) of seven storms in Iowa City gath-
ered using an optical rain gauge.16 The four storms
herein, labeled Iowa A through D per increasing
number of major peaks, are selected for their dis-
tinct geometries. The storms took place on Novem-
ber 30th, October 3rd, November 1st, and May 3rd
of 1990, corresponding to events that lasted 12.2,
9.8, 9.3, and 9.3 hours, respectively. The data were
originally gathered every five seconds but are here
slightly truncated to a multiple of 256, downscaled
to such a resolution, and finally normalized to unity.
The new time intervals for the data points are, in
order, every 2 minutes 40 seconds, 2 minutes 15

seconds, 2 minutes 10 seconds, and 2 minutes 10
seconds.

While other encodings of these sets for vary-
ing numbers of maps, based on the original FM
approach and other extensions yielding attrac-
tors that are not functions, have been reported
elsewhere,12 here we shall only concentrate on rep-
resentations obtained with three maps (per wire),
which, in accordance with Fig. 3, are representa-
tions utilizing 15 free parameters (two intermedi-
ate x’s common to both wires, two intermediate
y’s per wire, three scalings dn per wire, two
weights common to both wires, and a final weigh-
ing parameter used when combining the two derived
histograms). In the interest of brevity, the parame-
ters used in the upcoming figures are not included
here, but in the online appendix at http://puente.
lawr.ucdavis.edu/omake/fractals2012.html.

The results that follow are found by using a gen-
eralized particle swarm algorithm17 to minimize the
l2-norm of averaged cumulative distribution devia-
tions between the loopy fit and the data,

err =
√

1
N0

N0∑
n=1

(cn − ĉn)2, (10)

where N0 is the number of data points (256 in this
case), and cn and ĉn denote the nth value of the
cumulative distribution of the original record and
the generated fit, respectively. To ensure geometric
similarity between plausible solutions and the orig-
inal data set, we impose a penalty on the objective
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Fig. 4 Iowa A renderings. Left column: the fit, in black, imposed on the original data, in gray. First middle column: the
cumulative distributions of the data and the fit, with errors colored as area between the curves. Second middle column:
the autocorrelation function of the data and the fit. Right column: scatterplot of the data (horizontal) vs. the fit (verti-
cal). Diagonal lines indicate ±10% lines. The representations correspond to ErrCumul in Table 1, from top to bottom.
Readers interested in reconstructing the plots may navigate to the online Appendix, where all parameters may be found:
http://puente.lawr.ucdavis.edu/omake/fractals2012.html.

Table 1 Statistics for the Iowa A Storm Representations: l2-Norm of Averaged Error on Data (ErrData),
l2-Norm of Averaged Cumulative Distribution Deviations (ErrCuml), Maximum Deviation between
Cumulative Distributions (MaxDev), Nash–Sutcliffe Model Efficiency Coefficient for the Data (NS-Data),
Nash– Sutcliffe Coefficient for the Autocorrelation (NS-Auto), Fractal Dimension (FractalD), Entropy
Dimension (EntropyD), Autocorrelation Lag at 1/e (Lag 1/e), and Autocorrelation at Lag 0 (Lag 0).
The Representations are All Achieved Using 15 Parameters.

# ErrData ErrCuml MaxDev NS-Data NS-Auto FractalD EntropyD Lag 1/e Lag 0

(Data) n/a n/a n/a n/a n/a 1.33 0.91 9 18
1 0.28% 0.72% 2.27% 0.64 0.96 1.33 0.92 7 18
2 0.28% 0.76% 1.84% 0.64 0.93 1.37 0.91 7 18
3 0.36% 0.77% 2.10% 0.43 0.83 1.38 0.90 8 15
4 0.32% 0.77% 1.96% 0.56 0.90 1.43 0.91 7 17

function if the maximum deviations in cumulative
distributions exceed 10% anywhere.

In Figs. 4–7, we see four local minima results
per each of the storm sets corresponding to the

column ErrCuml (i.e. Eq. (10)) in Tables 1–4, listed
in increasing order. In each figure, the plots on the
left are the best fits for the set (in dark) imposed
on top of the set itself (in gray), which are rescaled

Fr
ac

ta
ls

 2
01

2.
20

:2
61

-2
70

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
,"

 o
n 

02
/2

6/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



December 5, 2012 9:20 0218-348X
1250024

Fractal Interpolating Functions for Geophysical Encoding 267

Fig. 5 Iowa B renderings. The row and column setup is as in Fig. 4. From top to bottom, the representations correspond to
ErrCumul in Table 2.

Table 2 Statistics for the Iowa B Storm Representations. Column Descriptions are as in Table 1.
The Representations are All Achieved Using 15 Parameters.

# ErrData ErrCuml MaxDev NS-Data NS-Auto FractalD EntropyD Lag 1/e Lag 0

(Data) n/a n/a n/a n/a n/a 1.36 0.94 10 31
1 0.19% 0.48% 1.42% 0.77 0.97 1.42 0.95 12 33
2 0.21% 0.61% 1.54% 0.71 0.94 1.43 0.94 8 35
3 0.26% 0.65% 1.66% 0.56 0.87 1.37 0.94 10 35
4 0.25% 0.67% 1.81% 0.57 0.92 1.36 0.94 9 36

for presentational purposes such that the maximum
value of the original data is 1. To their right are
plots of the cumulative distributions, with that of
the data set shown as a black line and deviations
shown as gray areas. Next are the autocorrelation
functions of the fit (dark) on top of the data (gray).
The right-most plot illustrates the scatter of the
data (x-axis) versus the fits (y-axis); the two gray
bands denote ±10% deviation from the one-to-one
line. As a side note, the bottom result in Fig. 5 is
the same representation used to illustrate the loopy
idea in Figs. 1 and 3.

Evidently, these renderings are terrific fits for the
data sets, not only in their distributions (inten-
tionally optimized) but also in their autocorrelation
functions. Notice that the placement of the major
peaks are well preserved, with the majority of points
falling within the 10% bands, and for the first three
storms, any outliers in the scatterplots do not stray
particularly far from the center.

The goodness of the results can also be veri-
fied by considering the information in Tables 1–4.
First of all, notice that the objective function val-
ues (ErrCuml) are all less than 0.80% (and does
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Fig. 6 Iowa C renderings. The row and column setup is as in Fig. 4. From top to bottom, the representations correspond to
ErrCumul in Table 3.

Table 3 Statistics for the Iowa C Storm Representations. Column Descriptions are as in Table 1.
The Representations are all Achieved Using 15 Parameters.

# ErrData ErrCuml MaxDev NS-Data NS-Auto FractalD EntropyD Lag 1/e Lag 0

(Data) n/a n/a n/a n/a n/a 1.37 0.93 8 46
1 0.29% 0.62% 2.38% 0.51 0.83 1.39 0.94 13 44
2 0.27% 0.64% 2.25% 0.59 0.91 1.42 0.94 9 36
3 0.34% 0.64% 2.18% 0.34 0.82 1.46 0.93 7 45
4 0.28% 0.66% 2.07% 0.55 0.88 1.42 0.93 6 39

not exceed 2.40% anywhere, i.e. MaxDev) and the
l2-norm of averaged errors on the data set itself
(ErrData; not optimized) are less than 0.40%. This
is confirmed by the large Nash–Sutcliffe model effi-
ciency coefficients (NS-Data and NS-Auto; calcu-
lated as 1 minus the ratio of the sum of squared
deviations between data and model to the sum
of squared deviations of the data relative to its
mean) between the individual data points and also
the autocorrelation functions, and moreover, by the
close fittings of the fractal and entropy dimensions
and lags of the autocorrelation functions at 1/e and
0 in the last four columns.

As verifiable from the parameters given in the
online Appendix, these imperfect but nonetheless
remarkable results come from local minima in dis-
tinct regions of parameter space as identified by
the particle swarm procedure, which implies that
a unique global solution, if one exists at all, may be
difficult to find. This also happens to be the case for
similar results computed based on four maps (also
found in the Appendix), which yield results similar
to the ones presented here.

As may be appreciated, the first three storms
were better fitted than the last, whose additional
scatter is reflected by the lower Nash–Sutcliffe
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Fig. 7 Iowa D renderings. The row and column setup is as in Fig. 4. From top to bottom, the representations correspond
to ErrCumul in Table 4.

Table 4 Statistics for the Iowa D Storm Representations. Column Descriptions are as in Table 1.
The Representations are All Achieved Using 15 Parameters.

# ErrData ErrCuml MaxDev NS-Data NS-Auto FractalD EntropyD Lag 1/e Lag 0

(Data) n/a n/a n/a n/a n/a 1.48 0.96 5 9
1 0.24% 0.73% 2.33% 0.36 0.42 1.56 0.97 4 13
2 0.21% 0.73% 1.95% 0.51 0.81 1.54 0.98 7 12
3 0.27% 0.74% 1.85% 0.15 0.08 1.51 0.96 4 11
4 0.27% 0.77% 2.26% 0.18 0.65 1.49 0.96 3 10

coefficients of data and autocorrelation (relative
to the other fits) despite the excellent preserva-
tion of the fractal and autocorrelation qualifiers
(see Table 4). Notice, however, that as actual data
sets are not free of measurement errors,18 these fits
can be considered sufficiently reasonable encodings,
or at the very least, very suitable simulations for
what nature produces. For after all, without know-
ing what the real data set is, no one can distinguish
between the real data set and the FM projections,
and the quality of the fits remains when the data is
scaled back to the original resolution.

For the sake of comparison, it must be empha-
sized that the excellent results herein are as good,
but not better, as those that may be obtained from
a single wire and other extensions of the fractal-
multifractal approach that do not close the loop
and that resulted in other fits requiring from nine
to 19 parameters.12 As closing the loop requires 15
parameters, the representations herein are indeed
suitable deterministic alternatives for the encoding
of the rainfall sets.

As may be verified on the online Appendix, hav-
ing additional parameters in the search leads to

Fr
ac

ta
ls

 2
01

2.
20

:2
61

-2
70

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
,"

 o
n 

02
/2

6/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



December 5, 2012 9:20 0218-348X
1250024

270 H.-H. Huang et al.

combinations of wires and not to the usage of sin-
gle ones and such implies that there are multi-
ple approximations for a given pattern within the
framework of projections and that the involved
fitness surface is difficult to navigate towards a
global optima. Overall, the results herein support
the notion that simplicity may be at the root of
complexity, in this case via projections and without
the need of invoking random mechanisms.19

4. CONCLUSIONS

We have demonstrated how combining two projec-
tions of fractal interpolating functions sharing a
common multinomial multifractal input reasonably
generalizes the FM method, which results in suit-
able encodings of natural patterns. Although the
extension requires more parameters than the origi-
nal approach, we obtain in return additional flexibil-
ity in the projections; that is, the second projection
can now account for textures that the first projec-
tion may have missed, which then leads to a better
fit. All of this is accomplished while maintaining
parsimony in the parameter count, as evidenced by
the compression ratios of 17:1 for 256-value sets and
in excess of 440:1 for the original sets.
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