Chaos, Complexity \& Christianity

5. The deterministic nature of chaos

Carlos E. Puente
University of California, Davis

Summary

- Introduces the logistic map and its amazing dynamics.
- Explains how such a deterministic equation gives rise to intertwined periodic and chaotic behaviors.
- Introduces the diagram of bifurcations or the Feigenbaum tree.
- Explains why the "butterfly effect" happens.
- Shows chaotic attractors in two and three dimensions.

The dynamics of the logistic map

(May, 1976; Gleick, 1987; Schroeder, 1992; Turcotte, 1997)

The logistic map

- Praised as one of the most important scientific achievements of the twentieth century, together with relativity theory and quantum mechanics, chaos theory provides useful and poignant symbols in relation to our peace.

The logistic map

- Praised as one of the most important scientific achievements of the twentieth century, together with relativity theory and quantum mechanics, chaos theory provides useful and poignant symbols in relation to our peace.
- The prototypical equation used to illustrate the well-established theory is the simple logistic map:

$$
X_{k+1}=\alpha X_{k}\left(1-X_{k}\right)
$$

where X is the normalized size of a population (between 0 and 1), say of rabbits, k and $k+1$ are two successive generations and α is a parameter that may be between 0 and 4 , inclusive.

The logistic map

- Praised as one of the most important scientific achievements of the twentieth century, together with relativity theory and quantum mechanics, chaos theory provides useful and poignant symbols in relation to our peace.
- The prototypical equation used to illustrate the well-established theory is the simple logistic map:

$$
X_{k+1}=\alpha X_{k}\left(1-X_{k}\right)
$$

where X is the normalized size of a population (between 0 and 1), say of rabbits, k and $k+1$ are two successive generations and α is a parameter that may be between 0 and 4 , inclusive.

- The quadratic equation defines, from a generation to the next, a symmetric graph with the form of a parabola, one that passes by the points $(0,0)$ and $(1,0)$ and whose peak, by the middle, is $\alpha / 4$:

The logistic map

- The curve exhibits and increase from generation to generation if the population is small, but a decrease if the population is large, which is logical.

The 0 gistic nne

- The curve exhibits and increase from generation to generation if the population is small, but a decrease if the population is large, which is logical.
- The straight line $\boldsymbol{Y}=\boldsymbol{X}$ has been added to the figure to calculate the evolution of a population that starts at a size X_{0} : the next size is read from the graph, and then such X_{1} is taken to the one-to-one line to read X_{2}, etc.

The logistic map

- Here we observe the evolution of a population, reiterating the logistic map, when the parameter takes on the value of 2.8.

The logistic map

- Here we observe the evolution of a population, reiterating the logistic map, when the parameter takes on the value of 2.8.
- As may be seen, the population converges to a value X_{∞} that is the nonzero intersection between the straight line and the parabola, and this "attractor" always happens provided that X_{0} is not 0 or 1 .

The ogisticinner

- Here we observe the evolution of a population, reiterating the logistic map, when the parameter takes on the value of 2.8.
- As may be seen, the population converges to a value X_{∞} that is the nonzero intersection between the straight line and the parabola, and this "attractor" always happens provided that X_{0} is not 0 or 1 .
- But this is not always the case, and what is obtained depends on α :

The logistic dynamics

$$
\begin{gathered}
0<\alpha \leq 1 \\
X_{\infty}=0
\end{gathered}
$$

- When the parabola is below the line, that is when α is less than or equal to 1 , the population becomes extinct and the origin attracts the dynamics for every initial size X_{0}.

The logistic dynamics

$$
\begin{gathered}
0<\alpha \leq 1 \\
X_{\infty}=0
\end{gathered}
$$

- When the parabola is below the line, that is when α is less than or equal to 1, the population becomes extinct and the origin attracts the dynamics for every initial size X_{0}.
- Now, when the curve "crosses the line" and α is between 1 and 3, the population converges to the non-zero intersection between the line and the parabola, that is, to the "fixed point" given by the shown equation, alpha minus one over alpha.

The logistic dynamics

$$
\begin{gathered}
0<\alpha \leq 1 \\
X_{\infty}=0
\end{gathered}
$$

- When the parabola is below the line, that is when α is less than or equal to 1, the population becomes extinct and the origin attracts the dynamics for every initial size X_{0}.
- Now, when the curve "crosses the line" and α is between 1 and 3, the population converges to the non-zero intersection between the line and the parabola, that is, to the "fixed point" given by the shown equation, alpha minus one over alpha.
- When the parabola exceeds the line, the origin always repels. (!)

The logistic dynamics

$\alpha=3.2$
period 2

- When α is greater than 3, what happened to the origin occurs to the other intersection between the line and the curve: such a location repels the dynamics and there appear repetitions every two generations. (!)

The logistic dynamics

$$
\alpha=3.2
$$

$$
\text { period } 2
$$

- When α is greater than 3, what happened to the origin occurs to the other intersection between the line and the curve: such a location repels the dynamics and there appear repetitions every two generations. (!)
- If α continues growing, such repetitions repel and there appear repetitions every four generations. (!)

The logistic dynamics

$\alpha=3.2$
period 2

- When α is greater than 3, what happened to the origin occurs to the other intersection between the line and the curve: such a location repels the dynamics and there appear repetitions every two generations. (!)
- If α continues growing, such repetitions repel and there appear repetitions every four generations. (!)
- Surprisingly, there appears a "chain of bifurcations": every power of 2 happens before $\alpha_{\infty} \approx 3.5699$... (!)

The logistic dynamics

$\alpha=3.6$
aperiodic
strange

- When $\alpha>\alpha_{\infty}$, there appear infinite "strange" attractors exhibiting no repetition, that is, like the expansion of irrational numbers, and they appear as guided by chance, although they are given by a deterministic process. (!)

The logistic dynamics

$\alpha=3.6$
aperiodic
strange

$$
\alpha=4
$$

aperiodic
chaotic

- When $\alpha>\alpha_{\infty}$, there appear infinite "strange" attractors exhibiting no repetition, that is, like the expansion of irrational numbers, and they appear as guided by chance, although they are given by a deterministic process. (!)
- As is observed, such sets have the structure of dust and they define the well-named behavior we call chaotic. (!)

The logistic dynamics

$\alpha=3.6$
aperiodic
strange

$$
\alpha=4
$$

aperiodic
chaotic

- When $\alpha>\alpha_{\infty}$, there appear infinite "strange" attractors exhibiting no repetition, that is, like the expansion of irrational numbers, and they appear as guided by chance, although they are given by a deterministic process. (!)
- As is observed, such sets have the structure of dust and they define the well-named behavior we call chaotic. (!)
- When $\alpha=3.6$ the attractor contains two separate zones, but when $\alpha=4$ the set encompasses almost all the interval from 0 to 1 , but with small little holes as it is dusty.

The logistic dynamics

$\alpha=3.83$ period 3

- When α is greater than α_{∞}, there appear also repetitive attractors whose repetitions are not powers of 2 : for $\alpha=3.83$ there appear oscillations every three generations and for $\alpha=3.74$ there exist every five generations. (!)

The logistic dynamics

$$
\begin{gathered}
\alpha=3.83 \\
\text { period } 3
\end{gathered}
$$

- When α is greater than α_{∞}, there appear also repetitive attractors whose repetitions are not powers of 2 : for $\alpha=3.83$ there appear oscillations every three generations and for $\alpha=3.74$ there exist every five generations. (!)
- As if by magic, the curvatures of the parabolas synchronize and the horizontal-vertical lines give rise to repetitions. (!)

The logistic dynamics

$\alpha=3.83$ period 3

$\alpha=3.74$
period 5

- When α is greater than α_{∞}, there appear also repetitive attractors whose repetitions are not powers of 2 : for $\alpha=3.83$ there appear oscillations every three generations and for $\alpha=3.74$ there exist every five generations. (!)
- As if by magic, the curvatures of the parabolas synchronize and the horizontal-vertical lines give rise to repetitions. (!)
- In an admirable way, the logistic map defines oscillations that correspond to any natural number. (!)

The diagram of bifurcations

(Feigenbaum, 1978; Maurer and Libchaber, 1979; Puente, 2011, 2019)

The diagram of bifurcations

- X_{∞} as a function of α, for stable attractors, is known as the diagram of bifurcations:

The diagram of bifurcations

- X_{∞} as a function of α, for stable attractors, is known as the diagram of bifurcations:

- Such has the shape of a tree if rotated 90 degrees counterclockwise.

The diagrain ofbiturcitions

- X_{∞} as a function of α, for stable attractors, is known as the diagram of bifurcations:

- Such has the shape of a tree if rotated 90 degrees counterclockwise.
- After α_{∞}, the periodic and the chaotic intertwine, and the infinite strange attractors are little dots in vertical lines.

The diagram of bifurcations

- The striking tail of the diagram is seen in more detail here:

The diagram of bifurcations

- The striking tail of the diagram is seen in more detail here:

- The "tree" contains "buds" in periodic "white bands" for any value greater than 2 , and the most notorious, from right to left, correspond to periods 3,5 and 6. (!)

The diagram of bifurcations

- Amplifying the central bud of period 3 gives:

The diagram of bifurcations

- Al amplificar el brote central del período 3 resulta:

- This is a reduced copy of the foliage of the tree, without its straight root.

The diagram of bifurcations

- Al amplificar el brote central del período 3 resulta:

- This is a reduced copy of the foliage of the tree, without its straight root.
- As the bud contains little buds, the diagram exhibits an exquisite selfsimilarity ad infinitum. (!)

The diagram of bifurcations

- There exist an order in this route towards chaos, for, as demonstrated by Mitchell Feigenbaum in 1978, all the bifurcations happen according to two universal constants:

$$
\begin{array}{cc}
d_{n} / d_{n+1} \rightarrow \mathcal{F}_{1}=-2.50 \ldots & \Delta_{n} / \Delta_{n+1} \rightarrow \mathcal{F}_{2}=4.66 \ldots \\
\text { openings } & \text { durations }
\end{array}
$$

The diagram of bifurcations

- There exist an order in this route towards chaos, for, as demonstrated by Mitchell Feigenbaum in 1978, all the bifurcations happen according to two universal constants:

$$
\begin{array}{cc}
d_{n} / d_{n+1} \rightarrow \mathcal{F}_{1}=-2.50 \ldots & \Delta_{n} / \Delta_{n+1} \rightarrow \mathcal{F}_{2}=4.66 \ldots \\
\text { openings } & \text { durations }
\end{array}
$$

- The diagram of bifurcations is also known as the "Feigenbaum tree", or "the fig tree", translating from German. (!)

The diagram of bifurcations

- The results are truly universal, as they happen for every curve that has a single peak:

$$
\begin{array}{r}
f(X)=\alpha X\left(1-X^{3}\right) \\
\mathrm{X}_{\mathrm{k}+1} \uparrow \\
1
\end{array}
$$

$$
f(X)=\alpha X(1-X)^{3}
$$

The diagram of bifurcations

- The results are truly universal, as they happen for every curve that has a single peak:

$$
f(X)=\alpha X\left(1-X^{3}\right)
$$

$$
f(X)=\alpha X(1-X)^{3}
$$

- As per Feigenbaum, these trees have a straight root, a "tender branch", and periodic branches intertwined with the dust of chaos.

The diagram of bifurcations

- The results are truly universal, as they happen for every curve that has a single peak:

$$
f(X)=\alpha X\left(1-X^{3}\right)
$$

$$
f(X)=\alpha X(1-X)^{3}
$$

- As per Feigenbaum, these trees have a straight root, a "tender branch", and periodic branches intertwined with the dust of chaos.
- These last ones are hence symbolic "fig leaves". (!)

The diagram of bifurcations

- The results are certainly important, for they are also relevant in physics, chemistry, biology, economics, etc.
$f(X)=\alpha X\left(1-X^{3}\right)$

$$
f(X)=\alpha X(1-X)^{3}
$$

The diagram of bifurcations

- The results are certainly important, for they are also relevant in physics, chemistry, biology, economics, etc.
$f(X)=\alpha X\left(1-X^{3}\right)$

$$
f(X)=\alpha X(1-X)^{3}
$$

- The dynamics of convection occur as per Feigenbaum, when α denotes the heat added to a fluid. (!)

The diagram of bifurcations

- The results are certainly important, for they are also relevant in physics, chemistry, biology, economics, etc.

$$
f(X)=\alpha X\left(1-X^{3}\right)
$$

$$
f(X)=\alpha X(1-X)^{3}
$$

- The dynamics of convection occur as per Feigenbaum, when α denotes the heat added to a fluid. (!)
- This is so for liquid helium, mercury and water, as found first by Jens Maurer and Albert Libchaber in 1979.

The diagram of bifurcations

- The chaotic tree contains sets of multi-fractal thorns that combine imbalances and holes as in the previous games related to the study of turbulence. The first one occurs for the value of α_{∞} :

The diagram of bifurcations

- The chaotic tree contains sets of multi-fractal thorns that combine imbalances and holes as in the previous games related to the study of turbulence. The first one occurs for the value of α_{∞} :

- Such come from a histogram of the dynamics at such a value.

The diagram of bifurcations

- The chaotic tree contains sets of multi-fractal thorns that combine imbalances and holes as in the previous games related to the study of turbulence. The first one occurs for the value of α_{∞} :

- Such come from a histogram of the dynamics at such a value.
- The tree is a thorn bush, as there are many spikes by the end of the white bands of the tree, where the buds define Cantor dusts. (!)

Properties of chaos

(Moon, 1987; Peitgen et al., 1992)

The geometry of the strange

(Peitgen et al., 1992)

- The non-repetitive chaotic dynamics come from "kneading" all possible states, stretching and folding the mass:

- The non-repetitive chaotic dynamics come from "kneading" all possible states, stretching and folding the mass:

- What is close separates and then it comes close, but without repeating.

The geometry of the strange

(Peitgen et al., 1992)

- The non-repetitive chaotic dynamics come from "kneading" all possible states, stretching and folding the mass:

- What is close separates and then it comes close, but without repeating.
- For the logistic map when $\alpha=4$ the two steps are:

stretching

folding

Sensitivity to X_{0}

- The chaotic dynamics are sensitive to where the process starts.

Sensitivity to X_{0}

- The chaotic dynamics are sensitive to where the process starts.
- While the orbit corresponding to $X_{0}=0.3$ and $\alpha=4$ is:

Sensitivity to X_{0}

- The chaotic dynamics are sensitive to where the process starts.
- While the orbit corresponding to $X_{0}=0.3$ and $\alpha=4$ is:

when the process starts at 0.3001 one gets:

Sensitivity to X_{0}

- The chaotic dynamics are sensitive to where the process starts.
- While the orbit corresponding to $X_{0}=0.3$ and $\alpha=4$ is:

when the process starts at 0.3001 one gets:

- This is the "butterfly effect", a divergence that prevents us to predict.

The Lyapunov exponent

- While chaotic dynamics diverge, the periodic one converges.

The Lyapunov exponent

- While chaotic dynamics diverge, the periodic one converges.
- This could be quantified studying the evolution of successive errors, using the Lyapunov exponent, λ, whether it is positive for divergence or not:

$$
\epsilon(n)=2^{\lambda n} \epsilon(0)
$$

The Lyapunov exponent

- While chaotic dynamics diverge, the periodic one converges.
- This could be quantified studying the evolution of successive errors, using the Lyapunov exponent, λ, whether it is positive for divergence or not:

$$
\epsilon(n)=2^{\lambda n} \epsilon(0)
$$

- For the logistic map such gives:

The Lyapunov exponent

- While chaotic dynamics diverge, the periodic one converges.
- This could be quantified studying the evolution of successive errors, using the Lyapunov exponent, λ, whether it is positive for divergence or not:

$$
\epsilon(n)=2^{\lambda n} \epsilon(0)
$$

- For the logistic map such gives:

- The maximum value, $\lambda=\ln 2$, occurs at the highest heat when $\alpha=4$.

Attractors in 2D and 3D

(Lorenz, 1983; Moon, 1987)

The Hénon attractor

- If the coupled equations, $x_{k+1}=1-a x_{k}^{2}+y_{k}$ and $y_{k+1}=\mathrm{b} x_{k}$ with parameters $a=1.4$ and $\mathrm{b}=0.3$, are used, there appears a strange attractor:

The Hénon attractor

- If the coupled equations, $x_{k+1}=1-a x_{k}^{2}+y_{k}$ and $y_{k+1}=\mathrm{b} x_{k}$ with parameters $a=1.4$ and $\mathrm{b}=0.3$, are used, there appears a strange attractor:

- It looks like a napoleon cake with a Cantorian structure, and it has a fractal dimension of 1.26. (!)

The Rössler attractor

- If now are employed three coupled equations, but not of differences but differential, $\dot{x}=-\mathrm{y}-z, \dot{y}=x+a y$ and $\dot{z}=b+z(x-c)$, with parameters $a=0.2, b=0.2$ and $c=5.7$, there appears a strange attractor in 3D:

The Rössler attractor

- If now are employed three coupled equations, but not of differences but differential, $\dot{x}=-\mathrm{y}-z, \dot{y}=x+a y$ and $\dot{z}=b+z(x-c)$, with parameters $a=0.2, b=0.2$ and $c=5.7$, there appears a strange attractor in 3D:

- This Cantorian object has the structure of a Möebius strip.

The Lorenz attractor

- The three equations, $\dot{x}=\sigma(y-z), \dot{y}=x(\rho-z)-y$ and $\dot{z}=x y-\beta z$, with parameters $\sigma=10, \rho=28$ and $\beta=8 / 3$ generate:

The Lorenz attractor

- The three equations, $\dot{x}=\sigma(y-z), \dot{y}=x(\rho-z)-y$ and $\dot{z}=x y-\beta z$, with parameters $\sigma=10, \rho=28$ and $\beta=8 / 3$ generate:

- The object looks like a "butterfly" and its dimension is 2.06. (!)

The Lorenz attractor

- The three equations, $\dot{x}=\sigma(y-z), \dot{y}=x(\rho-z)-y$ and $\dot{z}=x y-\beta z$, with parameters $\sigma=10, \rho=28$ and $\beta=8 / 3$ generate:

- The object looks like a "butterfly" and its dimension is 2.06. (!)
- These equations, used by Edward Lorenz to study climate, allowed him to identify, for the first time in 1963, the butterfly effect of deterministic, aperiodic strange attractors.
...Well, here ends this brief introduction.
In our next encounter we shall see, based on these ideas, how we may comprehend that Jesus is the narrow gate and the only way to the Father.

Until next time...

References

Feigenbaum, M. J. (1978) "Quantitative universality for a class of nonlinear transformations", Journal of Statistical Physics 19(1):25.

Gleick, J. (1987) Chaos. Making a new science, Penguin Books.
Lorenz, E. N. (1963) "Deterministic nonperiodic flow", Journal of Atmopheric Sciences 20:130
Lorenz, E. N. (1983) The Essence of Chaos, University of Washington Press.
Maurer, J. and A. Libchaber (1979) "Rayleigh-Bénard experiment in liquid helium frequency locking and the onset of turbulence", Journal de Physique Lettres 40: L419.

May, R. M. (1976) "Simple mathematical models with very complicated dynamics", Nature 261:459.
Moon, F. C. (1987) Chaotic Vibrations, John Wiley \& Sons.
Peitgen, H. -O., H. Jürgens and D. Saupe, (1992) Chaos and Fractals, Springer-Verlag.
Puente, C. E. (2011) The Fig Tree \& The Bell: Chaos, Complexity and Christianity. Santito Press.
Puente, C. E. (2019) https://campanitasdefe.com/2019/02/16/hablemos-de-caos/
Schroeder, M. (1992) Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, W. H. Freeman.
Turcotte, D. (1997) Fractals and Chaos in Geology and Geophysics, Cambridge University Press.

