Chaos, Complexity \& Christianity

2. An introduction to fractals and complexity

Carlos E. Puente

University of California, Davis

Summary

- Recalls the different kinds of numbers: naturals, integers, rationals and reals.
- Reviews the concept of dimension for points, lines, planes and volumes.
- Shows examples of fractal objects, including Cantor dust, the Koch curve and the Sierpinski triangle.
- Contrasts order with chaos via the logistic map.
- Introduces power-laws related to natural complexity.

Let's talk about numbers

The naturals and the integers

- The first set that we learn are the natural numbers,

$$
1,2,3, \ldots
$$

The naturals and the integers

- The first set that we learn are the natural numbers,

$$
1,2,3, \ldots
$$

- This set is infinite, and we grasp what "dot, dot, dot" means.

The naturals and the integers

- The first set that we learn are the natural numbers,

$$
1,2,3, \ldots
$$

- This set is infinite, and we grasp what "dot, dot, dot" means.
- Then there are the integers: the naturals, zero, and the negatives,

$$
\ldots-2,-1,0,1,2, \ldots
$$

The naturals and the integers

- The first set that we learn are the natural numbers,

$$
1,2,3, \ldots
$$

- This set is infinite, and we grasp what "dot, dot, dot" means.
- Then there are the integers: the naturals, zero, and the negatives,

$$
\ldots-2,-1,0,1,2, \ldots
$$

- This set is also infinite, but not larger than the naturals: 0 is the first, 1 the second, -1 is the third, 2 is the fourth, -2 is the fifth, and so on.

The naturals and the integers

- The first set that we learn are the natural numbers,

$$
1,2,3, \ldots
$$

- This set is infinite, and we grasp what "dot, dot, dot" means.
- Then there are the integers: the naturals, zero, and the negatives,

$$
\ldots-2,-1,0,1,2, \ldots
$$

- This set is also infinite, but not larger than the naturals: 0 is the first, 1 the second, -1 is the third, 2 is the fourth, -2 is the fifth, and so on.
- Infinity is certainly an odd concept, for we have shown that

$$
2 \cdot \infty+1=\infty
$$

The rationals

- The next set of numbers we learn are the rationals, the fractions, the ratios of integers, denoted by p / q.

The rationals

- The next set of numbers we learn are the rationals, the fractions, the ratios of integers, denoted by p / q.
- Some examples of these numbers are:

$$
\begin{aligned}
1 / 2 & =0.5000 \ldots \\
2 / 3 & =0.6666 \ldots \\
1 / 11 & =0.090909 \ldots
\end{aligned}
$$

The rationals

- The next set of numbers we learn are the rationals, the fractions, the ratios of integers, denoted by p / q.
- Some examples of these numbers are:

$$
\begin{aligned}
1 / 2 & =0.5000 \ldots \\
2 / 3 & =0.6666 \ldots \\
1 / 11 & =0.090909 \ldots
\end{aligned}
$$

- As seen, fractions contain repeatable patterns, the 0's, the 6's and the 09's.

The retionels

- The next set of numbers we learn are the rationals, the fractions, the ratios of integers, denoted by p / q.
- Some examples of these numbers are:

$$
\begin{aligned}
1 / 2 & =0.5000 \ldots \\
2 / 3 & =0.6666 \ldots \\
1 / 11 & =0.090909 \ldots
\end{aligned}
$$

- As seen, fractions contain repeatable patterns, the 0's, the 6's and the 09's.
- Sometimes such "steady state" appears immediately, as in 2/3 and 1/11, or it is reached after a finite "transient state", as it happens with 1/2.

The rationals

- The digits of a rational number p / q are predictable: after the finite transient state there comes a repetition of the stable state, also finite.

The rationals

- The digits of a rational number p / q are predictable: after the finite transient state there comes a repetition of the stable state, also finite.
- Thus, although expansions are infinite, we may "rationalize" what "dot, dot, dot" means.

The rationals

- The digits of a rational number p / q are predictable: after the finite transient state there comes a repetition of the stable state, also finite.
- Thus, although expansions are infinite, we may "rationalize" what "dot, dot, dot" means.
- There are as many fractions as natural numbers:

The rationals

- The digits of a rational number p / q are predictable: after the finite transient state there comes a repetition of the stable state, also finite.
- Thus, although expansions are infinite, we may "rationalize" what "dot, dot, dot" means.
- There are as many fractions as natural numbers:

- Infinity has, in truth, its own rules: $\infty \cdot \infty=\infty$ (!)

The irrationals

- Many numbers are not fractions, for their expansions do not exhibit finite repetitions but infinite transient states.

The irrationals

- Many numbers are not fractions, for their expansions do not exhibit finite repetitions but infinite transient states.
- These irrationals and the rationals together make the real numbers:

The irrationals

- Many numbers are not fractions, for their expansions do not exhibit finite repetitions but infinite transient states.
- These irrationals and the rationals together make the real numbers:

- These cannot be counted and belong to a larger infinity. (!)

The irrationals

- Many numbers are not fractions, for their expansions do not exhibit finite repetitions but infinite transient states.
- These irrationals and the rationals together make the real numbers:

- These cannot be counted and belong to a larger infinity. (!)
- For, if we assume there exists a list:

$$
\begin{array}{cc}
1 \text { st } & 0 . a_{1} a_{2} a_{3} a_{4} a_{5} \ldots \\
2 n d & 0 . b_{1} b_{2} b_{3} b_{4} b_{5} \ldots \\
& \vdots \\
\text { nth } & 0 . x_{1} x_{2} x_{3} x_{4} x_{5} \ldots
\end{array}
$$

then $0 . y_{1} y_{2} y_{3} y_{4} y_{5} \ldots$ is not in the list if

$$
y_{1} \neq a_{1}, y_{2} \neq b_{2}, \ldots, y_{n} \neq x_{n} \text {, etc., which results in a contradiction. (!) }
$$

The irrationals

- The following are prominent irrationals associated with squares, circles and spirals:

$$
\begin{gathered}
\sqrt{2}=1.41421356 \ldots \\
\pi=3.14159265 \ldots \\
e=2.71828183 \ldots
\end{gathered}
$$

The irrationals

- The following are prominent irrationals associated with squares, circles and spirals:

$$
\begin{gathered}
\sqrt{2}=1.41421356 \ldots \\
\pi=3.14159265 \ldots \\
e=2.71828183 \ldots
\end{gathered}
$$

- As the expansions do not repeat, we cannot predict the next digit.

The irrationals

- The following are prominent irrationals associated with squares, circles and spirals:

$$
\begin{gathered}
\sqrt{2}=1.41421356 \ldots \\
\pi=3.14159265 \ldots \\
e=2.71828183 \ldots
\end{gathered}
$$

- As the expansions do not repeat, we cannot predict the next digit.
- For these numbers "dot, dot, dot" is a mystery.

The irrationals

- The following are prominent irrationals associated with squares, circles and spirals:

$$
\begin{gathered}
\sqrt{2}=1.41421356 \ldots \\
\pi=3.14159265 \ldots \\
e=2.71828183 \ldots
\end{gathered}
$$

- As the expansions do not repeat, we cannot predict the next digit.
- For these numbers "dot, dot, dot" is a mystery.
- In fact, the digits of these happen as if they were "guided by chance".

The irrationals

- The following are prominent irrationals associated with squares, circles and spirals:

$$
\begin{gathered}
\sqrt{2}=1.41421356 \ldots \\
\pi=3.14159265 \ldots \\
e=2.71828183 \ldots
\end{gathered}
$$

- As the expansions do not repeat, we cannot predict the next digit.
- For these numbers "dot, dot, dot" is a mystery.
- In fact, the digits of these happen as if they were "guided by chance".
- Fully understanding the irrationals is not possible unless they possess a particularly defining property, like the famous numbers above.

The concept of dimension

(Mandelbrot, 1982)

The concept of dimension

- We know that a point has no dimension, a line segment is onedimensional, a plane is two-dimensional and we live in three-dimensions.

The concept of dimension

- We know that a point has no dimension, a line segment is onedimensional, a plane is two-dimensional and we live in three-dimensions.
- These may be verified counting "boxes" needed to cover an object.

The concept of dimension

- We know that a point has no dimension, a line segment is onedimensional, a plane is two-dimensional and we live in three-dimensions.
- These may be verified counting "boxes" needed to cover an object.
- Consider, for instance, intervals of a size δ and ask how many of them, $N(\delta)$, are required to cover a segment of a straight line having size 1.

The concept of dimension

- We know that a point has no dimension, a line segment is onedimensional, a plane is two-dimensional and we live in three-dimensions.
- These may be verified counting "boxes" needed to cover an object.
- Consider, for instance, intervals of a size δ and ask how many of them, $N(\delta)$, are required to cover a segment of a straight line having size 1.
- If δ is equal to 1 , only one suffices, $\mathrm{N}(1)=1$, but if $\delta=1 / 3$, then one requires three such closed intervals, or $N(1 / 3)=3$:

The concentof dinnension

- We know that a point has no dimension, a line segment is onedimensional, a plane is two-dimensional and we live in three-dimensions.
- These may be verified counting "boxes" needed to cover an object.
- Consider, for instance, intervals of a size δ and ask how many of them, $N(\delta)$, are required to cover a segment of a straight line having size 1.
- If δ is equal to 1 , only one suffices, $\mathrm{N}(1)=1$, but if $\delta=1 / 3$, then one requires three such closed intervals, or $N(1 / 3)=3$:

- If $\delta=1 / \mathrm{n}, \mathrm{N}(\delta)=\mathrm{n}$, and then $\mathrm{N}(\delta)=\delta^{-1}$, which defines the dimension of the straight line as the negative of the exponent, or $\mathrm{D}=1$. (!)

The concept of dimension

- The ideas work for a point, for only one box of any δ is required to cover it: $\mathrm{N}(\delta)=1=\delta^{-0}$, thus $\mathrm{D}=0$. (!)

The concept of dimension

- The ideas work for a point, for only one box of any δ is required to cover it: $\mathrm{N}(\delta)=1=\delta^{-0}$, thus $\mathrm{D}=0$. (!)
- For a finite number of points, say m of them, the dimension is also zero, as for $\delta^{\prime} \mathrm{s}$ sufficiently small, $\mathrm{N}(\delta)=\mathrm{m} \cdot \delta^{-0}$, and the exponent continues being equal to zero. (!)

The concept of dimension

- The ideas work for a point, for only one box of any δ is required to cover it: $\mathrm{N}(\delta)=1=\delta^{-0}$, thus $\mathrm{D}=0$. (!)
- For a finite number of points, say m of them, the dimension is also zero, as for δ^{\prime} 's sufficiently small, $\mathrm{N}(\delta)=\mathrm{m} \cdot \delta^{-0}$, and the exponent continues being equal to zero. (!)
- For a plane and a volume the argument is similar, but instead of using intervals one ought to employ squares and cubes having sizes δ.

The concept of dimension

- The ideas work for a point, for only one box of any δ is required to cover it: $\mathrm{N}(\delta)=1=\delta^{-0}$, thus $\mathrm{D}=0$. (!)
- For a finite number of points, say m of them, the dimension is also zero, as for δ^{\prime} s sufficiently small, $\mathrm{N}(\delta)=\mathrm{m} \cdot \delta^{-0}$, and the exponent continues being equal to zero. (!)
- For a plane and a volume the argument is similar, but instead of using intervals one ought to employ squares and cubes having sizes δ.
- For a plane one gets $N(\delta)=\delta^{-2}$, o $D=2$, for, a reduction of δ by a factor of two, increases the number of squares by a factor of four, as is verified looking at floor tiles.

The concept of dimension

- The ideas work for a point, for only one box of any δ is required to cover it: $\mathrm{N}(\delta)=1=\delta^{-0}$, thus $\mathrm{D}=0$. (!)
- For a finite number of points, say m of them, the dimension is also zero, as for δ^{\prime} s sufficiently small, $\mathrm{N}(\delta)=\mathrm{m} \cdot \delta^{-0}$, and the exponent continues being equal to zero. (!)
- For a plane and a volume the argument is similar, but instead of using intervals one ought to employ squares and cubes having sizes δ.
- For a plane one gets $N(\delta)=\delta^{-2}$, o $D=2$, for, a reduction of δ by a factor of two, increases the number of squares by a factor of four, as is verified looking at floor tiles.
- As the plane contains infinite lines and points, $\infty \cdot 1=2$ and $\infty \cdot 0=2$. (!)

Some fractal sets

(Mandelbrot, 1982; Barnsley, 1988; Feder, 1988)

The Cantor set

- Consider what is left after taking away successive open intervals of size a third and by the middle from an interval of size 1 :

The Cantor set

- Consider what is left after taking away successive open intervals of size a third and by the middle from an interval of size 1:

- As the fragmentation increases, an infinite number of uncountable disperse points emerge: the "Cantor set", made of all reals between 0 and 1 whose ternary expansion does not contain 1's but 0's and 2's.

The Cantor set

- Consider what is left after taking away successive open intervals of size a third and by the middle from an interval of size 1 :

- As the fragmentation increases, an infinite number of uncountable disperse points emerge: the "Cantor set", made of all reals between 0 and 1 whose ternary expansion does not contain 1's but 0's and 2's.
- This set is topologically "nothing", but how much is $\infty \cdot 0$?

The Cantor set

- Consider what is left after taking away successive open intervals of size a third and by the middle from an interval of size 1:

- As the fragmentation increases, an infinite number of uncountable disperse points emerge: the "Cantor set", made of all reals between 0 and 1 whose ternary expansion does not contain 1's but 0's and 2's.
- This set is topologically "nothing", but how much is $\infty \cdot 0$?
-As $N(1 / 3)=2, N(1 / 9)=4 ; D=\ln 2 / \ln 3 \approx 0.63$, thus $\infty \cdot 0 \approx 0.63$. (!)

The Cantor set

$$
\begin{aligned}
& \delta=1 / 3^{n} \Rightarrow \ln \delta=-n \ln 3 \\
& n=-\frac{\ln \delta}{\ln 3} \\
& \text { Then, } \begin{aligned}
N(8) & =2^{n}-\frac{\ln \delta}{\ln 3} \\
& =2^{-2}
\end{aligned} \\
& =e^{-\frac{\ln \delta \ln 2}{\ln 3}} \\
& =\delta^{-\frac{\ln 2}{\ln 3}}
\end{aligned}
$$

The Cantor set

- Such a "dust", introduced by George Cantor in 1883, is a fractal object.

The Cantor set

- Such a "dust", introduced by George Cantor in 1883, is a fractal object.
- Other dusts may be found varying the size of the hole, e.g., taking out equidistant segments of size h\%, yields sets with dimension:

$$
D=\ln 2 /(\ln 2-\ln (1-h))
$$

The Cantor set

- Such a "dust", introduced by George Cantor in 1883, is a fractal object.
- Other dusts may be found varying the size of the hole, e.g., taking out equidistant segments of size h\%, yields sets with dimension:

$$
\mathrm{D}=\ln 2 /(\ln 2-\ln (1-\mathrm{h}))
$$

- Here, when $\mathrm{h}=0$, one obtains the interval and $\mathrm{D}=1$, and if $\mathrm{h}=1, \mathrm{D}=0$.

The Cantor set

- Such a "dust", introduced by George Cantor in 1883, is a fractal object.
- Other dusts may be found varying the size of the hole, e.g., taking out equidistant segments of size h\%, yields sets with dimension:

$$
\mathrm{D}=\ln 2 /(\ln 2-\ln (1-\mathrm{h}))
$$

- Here, when $\mathrm{h}=0$, one obtains the interval and $\mathrm{D}=1$, and if $\mathrm{h}=1, \mathrm{D}=0$.
- As h varies, D may be any number between 0 y 1 . (!)

The Cantor Set

- Such a "dust", introduced by George Cantor in 1883, is a fractal object.
- Other dusts may be found varying the size of the hole, e.g., taking out equidistant segments of size h\%, yields sets with dimension:

$$
\mathrm{D}=\ln 2 /(\ln 2-\ln (1-\mathrm{h}))
$$

- Here, when $h=0$, one obtains the interval and $D=1$, and if $h=1, D=0$.
- As h varies, D may be any number between 0 y 1. (!)
- The dimension reflects the amount of space covered by the set: the original Cantor dust covers approximately 63% of the line.

The Cantor Set

- Such a "dust", introduced by George Cantor in 1883, is a fractal object.
- Other dusts may be found varying the size of the hole, e.g., taking out equidistant segments of size h\%, yields sets with dimension:

$$
\mathrm{D}=\ln 2 /(\ln 2-\ln (1-\mathrm{h}))
$$

- Here, when $h=0$, one obtains the interval and $D=1$, and if $h=1, D=0$.
- As h varies, D may be any number between 0 y 1. (!)
- The dimension reflects the amount of space covered by the set: the original Cantor dust covers approximately 63\% of the line.
- There are other fractals defined over two and three dimensions.

The Koch curve

- Consider the set found replacing each line segment by four smaller segments having a third of a size and making up, by the middle, an equilateral triangle:

The Koch curve

- Consider the set found replacing each line segment by four smaller segments having a third of a size and making up, by the middle, an equilateral triangle:

- This is the Koch curve introduced in $1904, \mathrm{D}=\ln 4 / \ln 3 \approx 1.26$. (!)

The Koch curve

- Consider the set found replacing each line segment by four smaller segments having a third of a size and making up, by the middle, an equilateral triangle:

- This is the Koch curve introduced in $1904, \mathrm{D}=\ln 4 / \ln 3 \approx 1.26$. (!)
- There are other such sets with dimensions between 1 and 2 (inclusive).

The Sierpinski triangle

- Obtained dot by dot going towards the middle of three vertex or taking away central triangles successively, as introduced in 1915:

The Sierpinski triangle

- Obtained dot by dot going towards the middle of three vertex or taking away central triangles successively, as introduced in 1915:

- This is another fractal set, $D=\ln 3 / \ln 2 \approx 1.58$, and here $\infty \cdot 0 \approx 1.58$. (!)

More about fractals

- Fractals provide a suitable framework to address nature's complex geometries.

More about fractals

- Fractals provide a suitable framework to address nature's complex geometries.
- As stated very eloquently by Benoit Mandelbrot, who first coined the word fractal, "clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travels in a straight line". (!)

More about fractals

- Fractals provide a suitable framework to address nature's complex geometries.
- As stated very eloquently by Benoit Mandelbrot, who first coined the word fractal, "clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travels in a straight line". (!)
- Fractals are relevant in physics, geophysics, economics, biology, etc.

More about fractals

- Fractals provide a suitable framework to address nature's complex geometries.
- As stated very eloquently by Benoit Mandelbrot, who first coined the word fractal, "clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travels in a straight line". (!)
- Fractals are relevant in physics, geophysics, economics, biology, etc.
- In fact, fractals are everywhere and their implicit repetitiveness, their "selfsimilarity", is reflected in a simple power-law:

$$
\mathrm{N}(\delta) \sim \delta^{-D}
$$

Order and chaos

(Lorenz, 1963; May, 1976; Gleick, 1987)

Order and chaos

- Fractal sets are also found in the dynamics of non-linear systems. To illustrate this, it is pertinent to study the quadratic logistic map:

$$
X_{k+1}=\alpha X_{k}\left(1-X_{k}\right)
$$

denoting the evolution of a population from a generation to the next.

Order and chaos

- Fractal sets are also found in the dynamics of non-linear systems. To illustrate this, it is pertinent to study the quadratic logistic map:

$$
X_{k+1}=\alpha X_{k}\left(1-X_{k}\right)
$$

denoting the evolution of a population from a generation to the next.

- The limiting population, reiterating the map, depends on the parameter α.

Order and chaos

- Fractal sets are also found in the dynamics of non-linear systems. To illustrate this, it is pertinent to study the quadratic logistic map:

$$
X_{k+1}=\alpha X_{k}\left(1-X_{k}\right)
$$

denoting the evolution of a population from a generation to the next.

- The limiting population, reiterating the map, depends on the parameter α.
- When $\alpha=2.8$, a stable population, X_{∞}, appears, defining order:

Order and chaos

- When $\alpha=4$ the population does not rest at all, but wanders in dust forever on a fractal attractor:

Order and chaos

- When $\alpha=4$ the population does not rest at all, but wanders in dust forever on a fractal attractor:

- This chaos is unpredictable, as the expansion of an irrational number.

Order and chaos

- When $\alpha=4$ the population does not rest at all, but wanders in dust forever on a fractal attractor:

- This chaos is unpredictable, as the expansion of an irrational number.
- A small error in the initial value X_{0} yields large variations: e.g., whereas an initial value of 0.4 yields 0.1 after 7 steps, starting at 0.41 gives 0.69 . (!)

Order and chaos

- When $\alpha=4$ the population does not rest at all, but wanders in dust forever on a fractal attractor:

- This chaos is unpredictable, as the expansion of an irrational number.
- A small error in the initial value X_{0} yields large variations: e.g., whereas an initial value of 0.4 yields 0.1 after 7 steps, starting at 0.41 gives 0.69 . (!)
- This "butterfly effect" was first recognized while studying the weather.

Other power-laws

(Pareto, 1898; Schroeder, 1992; Turcotte, 1997)

Other power-laws

- They appear describing the frequency of complex natural events, such as earthquakes, $P[X \geq x] \sim x^{-c}$, and they yield straight lines in doublelogarithmic scales $(\ln P \sim-c \ln x)$:

Other power-laws

- They appear describing the frequency of complex natural events, such as earthquakes, $P[X \geq x] \sim x^{-c}$, and they yield straight lines in doublelogarithmic scales ($\ln P \sim-c \ln x$):

- These Pareto curves, with "heavy tails" and lacking characteristic scales, appear in natural violence, in avalanches, forest fires, etc., and also in the distributions of wealth and conflicts implicit in human fragmentation.
...Well, here ends this brief introduction.

Next time we shall see how based on these notions it may be shown that Jesus is the way, the truth, and the life.

Until next time...

References

Barnsley, M. F. (1988) Fractals Everywhere, Academic Press.
Feder, J. (1988) Fractals, Plenum Press.
Gleick, J. (1987) Chaos. Making a new science, Penguin Books.
Lorenz, E. N. (1963) "Deterministic nonperiodic flow", Journal of Atmopheric Sciences 20:130
Mandelbrot, B. B. (1982) The Fractal Geometry of Nature, W. H. Freeman.
May, R. M. (1976) "Simple mathematical models with very complicated dynamics", Nature 261:459.
Pareto, V. (1898) "Cours d'economie politique", Journal of Political Economy.
Schroeder, M. (1992) Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, W. H. Freeman.
Turcotte, D. (1997) Fractals and Chaos in Geology and Geophysics, Cambridge University Press.

