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Outline

• Recalls the different kinds of numbers: from naturals to integers, to rationals, to reals.

• Reviews the concept of dimension for points, lines, planes and volumes.

• Shows examples of fractals, including Cantor dust, Koch curve and Sierpinski triangle.

• Contrasts order with chaos via the logistic map.

• Introduces natural power-laws and self-organized criticality.
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• Before introducing fractals and other concepts associated with complexity, it is convenient

to talk about numbers.

• The first set we learn when we are kids are the natural numbers,

1, 2, 3, · · ·

• This set is infinite, and we grasp what “dot, dot dot” means.

• Then, there is the set of integers, that include the naturals, zero, and the negatives,

· · · − 2,−1, 0, 1, 2, · · ·

• This set is also infinite, but not larger than the naturals, for one can put the integers on a

list, i.e., 0 is the first, 1 is the second, -1 is the third, 2 is the fourth, -2 is the fifth, and so

on, “dancing” from left to right and back.

• Infinity is indeed an odd concept, for we just showed that

2 · ∞ + 1 = ∞ (!)
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• The next set of numbers we learn are the rationals, the fractions, i.e., the ratios of integers

denoted by p/q.

• Some examples of these numbers are,

1/2 = 0.5000 · · ·
2/3 = 0.666 · · ·

1/11 = 0.090909 · · ·

• As shown, fractions contain a repeatable pattern of digits in their expansion, i.e., the 0’s, the

6’s or the 09’s.

• Sometimes such “steady state” is reached immediately, as in 2/3 and 1/11, or appears after

a finite “transient,” e.g., 1/2 yields a 5 before it settles into infinitely many 0’s.

• At the end, the digits of a rational number p/q are fully predictable, for its transient and

steady-state fully determine the rest of the number’s expansion.

• Although expansions are infinite for these numbers, we may easily “rationalize” what “dot,

dot, dot” means for them.
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• All fractions put together make up another infinite set, but, surprisingly, there are the same

number of rationals than naturals, for one can list them sweeping a carpet diagonally:

1 → 2 3 → 4 · · ·
↙ ↗ ↙

1/2 2/2 3/2 4/2 · · ·
↓ ↗ ↙

1/3 2/3 3/3 4/3 · · ·
↙

1/4 2/4 3/4 4/4 · · ·
... ... ... ...

• This further confirms that infinity has its own rules, for

∞ ·∞ = ∞ (!)

• But not all numbers are fractions, for there are great many others whose decimal expansions

do not exhibit finite repetitions.

• These numbers are called irrationals and there are so many of them that they can not

even be listed, i.e., they are associated with a “larger” infinity. (!)
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• Prominently among them there are

√
2 = 1.41421356 · · ·
π = 3.14159265 · · ·
e = 2.71828183 · · ·

that are associated with squares, circles and spirals.

• As the expansions above do not repeat, one can not predict the next digit. Hence, “dot, dot,

dot” for these numbers describe an internal “mystery.”

• In fact, the digits for these and all irrationals are so “disorganized” that it appears to us that

they are “guided by chance.”

• As infinite expansions represent an unbridgeable limitation, irrational numbers may only

be fully understood if they possess a particularly defining property, like the three famous

numbers above.

• The irrationals and the rationals together make the real numbers. These are the collection

of “points” that are represented on a one-dimensional line.
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• Now, with numbers fully reviewed, we may turn our attention to the concept of dimension.

• We know that a point has no dimension, that a line segment is one-dimensional, that a plane

is two-dimensional, and that we live in three-dimensional space.

• It happens that there is an easy way to verify such results, by counting the number of “boxes”

required to cover a given set.

• Consider, for instance, intervals of a size δ and ask how many of them, N(δ), are required to

cover a line segment having size 1.

• If δ is equal to 1, then clearly one interval suffices, i.e., N(1) = 1. If δ = 1/3, then one

requires 3 such intervals, i.e., N(1/3) = 3:

• Clearly, if δ = 1/n, then N(δ) = n, and this leads to a simple relationship between δ and

N(δ), namely, N(δ) = δ−1. It turns out that the inverse of the obtained exponent yields

the dimension of the line segment, i.e., D = 1. (!)
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• That the ideas works for a point may be easily verified, for irrespective of δ one always

requires 1 such interval in order to cover a point, i.e., N(δ) = δ0 = 1, and hence D = 0.

• For a plane or a volume the arguments are similar, but instead of using intervals to cover

such sets it becomes appropriate to employ squares of cubes of a given side δ.

• Clearly, for a plane one gets N(δ) = δ−2, for a reduction of δ by a factor of two yields a

four-fold, 22, increase in the number of required squares, as may be easily verified glancing

at floor tiles.

• Likewise it happens for a cube, D = 3, for a change in δ by a factor of two results in an

eight-fold, 23, increase in N(δ).

• The aforementioned sets are prototypical Euclidean objects.

• Fractals are “fragmented” geometric sets whose fractal dimensions, as defined counting

pieces as before, are typically non-integers that exceed their topological dimensions.

• As an example, consider the so-called Cantor dust defined as the remains of recursively

“taking open third subintervals” from a given interval of size 1, as illustrated in the following

sketch.
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• As may be hinted, the Cantor set is made of infinitely many points. It clearly contains the

countable corners on the little intervals, but it turns out to be uncountable in size, as it

defined by all real numbers within [0, 1] whose ternary expansion, in terms of 0’s, 1’s and

2’s, does not contain a 1. (!)

• Topologically speaking, this set is just “sparse dust,” but, as there are great many points,

its dimension turns out to be greater than zero.

• Calculation of such a quantity may be done in parallel to what was explained earlier for a

line segment, as follows.

• If one chooses an interval of size 1, then clearly it may be used to cover the whole Cantor set,

i.e., N(1) = 1. As δ is dropped to 1/3, then N(δ) = 2; as δ = 1/9, N(δ) = 4, and so on.
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• In general, N(1/3n) = 2n, and this leads, after a little algebra, to N(δ) = δ−D, where the

exponent is given in terms of natural logarithms, D = ln2/ln3 ≈ 0.63. (!)

• The Cantor set is a fractal set because its dimension exceeds its topological dimension of

zero.

• Notice that other kinds of dusts may be easily constructed just by varying the size of the

original hole in the interval.

• If instead of removing middle third subintervals one takes out l% equidistant segments, the

implied dimension becomes D = ln2/(ln2 − ln(1 − l)).

• Such a dimension reflects the amount of space covered by the dust, for, depending on the

size of l, it could be any number between 0 and 1.

• When l = 0 the resulting set is, by construction, the interval from 0 to 1, and clearly such a

set has dimension 1. As l increases towards 1, the obtained set is increasingly sparse and

its dimension decreases towards 0.

• Fractals may also be defined over two- or three-dimensional space, as follows.
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• The Koch curve, found replacing every line segment by four smaller segments having a third

of the original length and making up through the middle an outer equilateral triangle,

is a fractal set on two dimensions that has fractal dimension D = ln4/ln3 ≈ 1.26.

• Other sets, topologically one-dimensional, and having dimensions between 1 and 2 (inclusive)

may be constructed just by varying the construction rule.

• The Koch curve, and others with dimensions greater than one, fill-up space in varying degrees

due to their infiniteness.
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• Another celebrated fractal set in the plane and having the same dimension of the Koch curve

is the Sierpinski triangle, found removing (in the spirit of the construction of the Cantor

set) successive middle triangles from a given solid triangle.

• Such a set may be obtained randomly iterating three simple rules that move a given location

to half the distance from the vertices of the original triangle:
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• Although distinct looking sets may have the same dimension, the notion of fractals has

provided a suitable framework to address nature’s complex geometries, in one and higher

dimensions.

• For as stated by Benoit Mandelbrot, who first coined the word fractal, “clouds are not

spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor

does lightning travels in a straight line.” (!)

• Even though nature does not provide the precise repetitiveness, i.e., self-similarity, as shown

in the examples, it is well established by now that fractals are relevant to many scientific

fields that include physics, geophysics, economics, and biology.

• Fractals are indeed everywhere, as the fabric of nature often results in fragmentation via the

repetition of simple rules, for counting the number of boxes needed to cover many natural

sets define power-laws, i.e., N(δ) ∼ δ−D. (!)

• Fractals sets have also been found associated with the dynamics of non-linear systems.

• Such include the complex unpredictable behavior known as chaos.
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• To illustrate what chaos is, it is pertinent to study the equation Xk+1 = αXk(1 − Xk),

denoting the evolution of a (normalized) population from a generation to the next.

• This equation, known as the logistic map and shaped as a parabola, results in alternative

behavior depending on the value of the parameter α, a number between 0 and 4.

• When α = 2.8 the population rests at X∞, the non-zero intersection of the 45 degree line

and the parabola,

irrespective of the initial population value denoted by X0.

• This case corresponds to an ordered condition, nicely expressed by the expansion of a rational

number with a single steady-state. (!)
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• When α = 4 the population does not rest at all, but wanders in dust for ever without any

repetition on a fractal attractor,

• This case is essentially unpredictable and its structure is captured by the expansion of an

irrational number. (!)

• This condition is known as chaotic for a small error in X0 yields sizable variations, e.g.,

whereas an initial value of 0.4 results in 0.1 after 7 generations, an initial value of 0.41

yields instead 0.69.

• Chaos was first recognized while studying the dynamics of the weather. Its presence repre-

sented a major breakthrough for it established that complexity may have simple roots.
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• A common trait of natural complex phenomena is the presence of power-laws in the frequency

distribution of events,

P [X ≥ x] ∼ x−c

• As in fractal sets, the simple log-log “lines” reflect the absence of characteristic scales in

many natural processes, such as earthquakes, floods, avalanches, fires, etc. (!)

• Such distributions possess “heavy tails” relative to the normal or Gaussian distribution,

associated with independence.
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• A very good model for such behavior in a variety of natural processes is the concept of

self-organized criticality, as introduced by Per Bak.

• The metaphor is that systems, via the accumulation of energies, arrange into a critical state

always at the verge of disintegration, as illustrated via a sand pile. Here, avalanches of

various sizes happen according to a power-law. (!)

• The ideas in this introduction and their relation to love and peace shall be further elabo-

rated in subsequent lectures.
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